اکثر مکاتبات کومش از طریق ایمیل سایت می باشد. لطفا Spam ایمیل خود را نیز چک نمایید.
   [صفحه اصلی ]   [Archive] [ English ]  
:: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
کار آزمایی بالینی::
تماس با ما::
تسهیلات پایگاه::
::
هزینه چاپ مقاله در کومش
با توجه به تصمیمات گرفته شده جهت پذیرش مقالات در مجله کومش از نویسندگان مقاله هزینه دریافت می گردد. هزینه پذیرش مقالات از ابتدای سال 1402 در مجله کومش  مبلغ 12.000.000ریال (یک میلیون و دویست هزار تومان) می باشد. که نویسنده مسئول می بایست جهت دریافت نامه پذیرش به حساب درآمد های دانشگاه واریز نمایند تا گواهی پذیرش مقاله صادر و مراحل بعدی انتشار مقاله انجام شود.
تبصره: این مصوبه شامل مقالاتی که نویسنده مسئول مقاله از همکاران دانشگاه علوم پزشکی سمنان باشد نمی شود.
..
لیست داوران پیشنهادی
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Citations87514259
h-index3821
i10-index272121

..
:: جلد 24، شماره 1 - ( بهمن و اسفند 1400 ) ::
جلد 24 شماره 1 صفحات 25-1 برگشت به فهرست نسخه ها
سلول‌های بنیادی مزانشیمی و نقش آن‌ها در رشد و گسترش سرطان و پتانسیل‌های درمان سرطان
فرشید زمانی ، سعید اورعی یزدانی ، لادن لنگرودی ، سید محمود هاشمی
چکیده:   (2334 مشاهده)
سلول‌های بنیادی مزانشیمی (Mesenchymal Stem Cells, MSCs) در اکثر بافت‌های بدن حضور دارند و در فرایندهای زیستی مختلف، از جمله حفظ هموستاز بافت‌ها و ترمیم زخم مشارکت دارند. بررسی‌های اخیر نشان داده است که MSCs توموری در ریزمحیط توموری (TME) اکثر تومورهای جامد نیز حضور دارند. MSCs تمایل زیادی به مهاجرت از بافت‌های نرمال به سمت بافت توموری دارند. این سلول‌ها پس از ورود به TME، تحت تاثیر سلول‌های سرطانی و سایر فاکتورهای موجود در TME قرار گرفته و به TA-MSCs تبدیل می‌شوند. بیش‌تر مطالعات بیانگر نقش غیر قابل انکار این سلول‌ها در حمایت از پیشرفت و گسترش سرطان می‌باشند. در این مقاله مروری ما به جمع‌آوری برخی از مهم‌ترین یافته‌ها در ارتباط با TA-MSCs و نقش آن‌ها در فرار سلول‌های سرطانی از سیستم ایمنی، کمک به متاستاز و برخی جنبه‌های دیگر گسترش تومور پرداخته و اثرات آن‌ها بر رفتار سلول‌های توموری و سایر سلول‌های موجود در TME را شرح داده‌ایم. در پایان نیز راه‌کارهای درمانی در برابر تومور را که بر پایه خواص MSCs است را دسته‌بندی کرده و به اختصار توضیح داده‌ایم.  
واژه‌های کلیدی: سلول های بنیادی مزانشیمی، سرطانها، ریزمحیط تومور، سلول های بنیادی سرطانی، فرار تومور، ایمونوتراپی
متن کامل [PDF 2120 kb]   (1293 دریافت)    
نوع مطالعه: مروري | موضوع مقاله: مروري
دریافت: 1399/11/2 | پذیرش: 1400/4/21 | انتشار: 1400/10/30
فهرست منابع
1. [1] Kang SG, Shinojima N, Hossain A, Gumin J, Yong RL, Colman H, Marini F, et al. Neurosurgery 2010; 67: 711-720. [DOI:10.1227/01.NEU.0000377859.06219.78] [PMID] [PMCID]
2. [2] Bianco P, Robey PG, Simmons PJ. Cell Stem Cell 2008; 2: 313-319. [DOI:10.1016/j.stem.2008.03.002] [PMID] [PMCID]
3. [3] Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Cytotherapy 2006; 8: 315-317. [DOI:10.1080/14653240600855905] [PMID]
4. [4] Brennen WN, Chen S, Denmeade SR, John T, Stem M, Bm-mscs C. Oncotarget 2013; 4: 106-117. [DOI:10.18632/oncotarget.805] [PMID] [PMCID]
5. [5] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Science 1999; 284: 143-147. [DOI:10.1126/science.284.5411.143] [PMID]
6. [6] Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Nature 2002; 418: 41-49. [DOI:10.1038/nature00870] [PMID]
7. [7] Escobar P, Bouclier C, Serret J, Bièche I, Brigitte M, Caicedo A, et al. Oncotarget 2015; 6: 29034-29047. [DOI:10.18632/oncotarget.4732] [PMID] [PMCID]
8. [8] Aravindhan S, Ejam SS, Lafta MH, Markov A, Yumashev AV, Ahmadi M. Mesenchymal stem cells and cancer therapy: insights into targeting the tumour vasculature. Cancer Cell Int 2021; 21: 1-15. [DOI:10.1186/s12935-021-01836-9] [PMID] [PMCID]
9. [9] Tayebi Kamardi M, Pourgholaminejad A, Baghban Eslaminejad M, Sotoodehnejadnematalahi F. Mesenchymal stem cells and their application in autoimmune disease treatment. Tehran University Medical Journal, September 2014; Vol. 72, No. 6: 341-351.
10. [10] Mahmoudi M, Taghavi-Farahabadi M, Rezaei N, Hashemi SM. Int Immunopharmacol 2019; 74: 105689. [DOI:10.1016/j.intimp.2019.105689] [PMID]
11. [11] Uccelli A, Laroni A, Brundin L, Clanet M, Fernandez O, Nabavi SM, et al. MEsenchymal StEm cells for Multiple Sclerosis (MESEMS): a randomized, double blind, cross-over phase I/II clinical trial with autologous mesenchymal stem cells for the therapy of multiple sclerosis. Trials 2019; 20: 1-13. [DOI:10.1186/s13063-019-3346-z] [PMID] [PMCID]
12. [12] Elgaz S, Kuçi Z, Kuçi S, Bönig H, Bader P. Clinical Use of Mesenchymal Stromal Cells in the Treatment of Acute Graft-versus-Host Disease. Transfus Med Hemotherapy 2019; 46: 27-34. [DOI:10.1159/000496809] [PMID] [PMCID]
13. [13] Sun XY, Ding XF, Liang HY, Zhang XJ, Liu SH, Bing-Han, et al. Efficacy of mesenchymal stem cell therapy for sepsis: a meta-analysis of preclinical studies. Stem Cell Res Ther 2020; 11: 1-10. [DOI:10.1186/s13287-020-01730-7] [PMID] [PMCID]
14. [14] Rodríguez-Fuentes DE, Fernández-Garza LE, Samia-Meza JA, Barrera-Barrera SA, Caplan AI, Barrera-Saldaña HA. Mesenchymal stem cells current clinical applications: a systematic review. Arch Med Res 2021; 52: 93-101. [DOI:10.1016/j.arcmed.2020.08.006] [PMID]
15. [15] Hill BS, Pelagalli A, Passaro N, Zannetti A. Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget 2017; 8: 73296-73311. [DOI:10.18632/oncotarget.20265] [PMID] [PMCID]
16. [16] Sun Z, Wang S, Zhao RC. The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J Hematol Oncol 2014; 7: 14. [DOI:10.1186/1756-8722-7-14] [PMID] [PMCID]
17. [17] Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 2010; 18: 884-901. [DOI:10.1016/j.devcel.2010.05.012] [PMID] [PMCID]
18. [18] Shahar T, Rozovski U, Hess KR, Hossain A, Gumin J, Gao F, et al. Percentage of mesenchymal stem cells in high-grade glioma tumor samples correlates with patient survival. Neuro Oncol 2017; 19: 660-668. [DOI:10.1093/neuonc/now239] [PMID] [PMCID]
19. [19] Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011; 71: 614-624. [DOI:10.1158/0008-5472.CAN-10-0538] [PMID] [PMCID]
20. [20] Bergfeld SA, DeClerck YA. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev 2010; 29: 249-261. [DOI:10.1007/s10555-010-9222-7] [PMID]
21. [21] Cuiffo BG, Karnoub AE. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr 2012; 6: 220-230. [DOI:10.4161/cam.20875] [PMID] [PMCID]
22. [22] Tsai K, Yang S, Lei Y, Tsai C, Chen H, Hsu C, et al. Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology 2011; 141: 1046-1056. [DOI:10.1053/j.gastro.2011.05.045] [PMID]
23. [23] Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557-563. [DOI:10.1038/nature06188] [PMID]
24. [24] Kidd S, Spaeth E, Klopp A, Andreeff M, Hall B, Marini F. The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe. Cytotherapy 2008; 10: 657-667. [DOI:10.1080/14653240802486517] [PMID]
25. [25] Poggi A, Musso A, Dapino I, Zocchi MR. Mechanisms of tumor escape from immune system: role of mesenchymal stromal cells. Immunol Lett 2014; 159: 55-72. [DOI:10.1016/j.imlet.2014.03.001] [PMID]
26. [26] Poggi A, Varesano S, Zocchi MR. How to hit mesenchymal stromal cells and make the tumor microenvironment immunostimulant rather than immunosuppressive. Front Immunol 2018; 9: 262. https://doi.org/10.3389/fimmu.2018.00262 [DOI:10.3389/fimmu.2018.01342] [PMID] [PMCID]
27. [27] Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 2015; 15: 669-682. [DOI:10.1038/nri3902] [PMID]
28. [28] Razmkhah M, Jaberipour M, Erfani N, Habibagahi M, Talei AR, Ghaderi A. Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-β1 and upregulate expression of regulatory molecules on T cells: do they protect breast cancer cells from the immune response? Cell Immunol 2011; 266: 116-122. [DOI:10.1016/j.cellimm.2010.09.005] [PMID]
29. [29] Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 2006; 25: 315-322. [DOI:10.1007/s10555-006-9001-7] [PMID]
30. [30] Croix BS, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, et al. Genes expressed in human tumor endothelium. Science 2000; 289: 1197-1202. [DOI:10.1126/science.289.5482.1197] [PMID]
31. [31] Sneddon JB, Borowiak M, Melton DA. Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme. Nature 2012; 491: 765-768. [DOI:10.1038/nature11463] [PMID] [PMCID]
32. [32] Roodhart JM, Daenen LG, Stigter EC, Prins HJ, Gerrits J, Houthuijzen JM, et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell 2011; 20: 370-383. [DOI:10.1016/j.ccr.2011.08.010] [PMID]
33. [33] Hossain A, Gumin J, Gao F, Figueroa J, Shinojima N, Takezaki T, et al. mesenchymal stem cells isolated from human Gliomas increase proliferation and maintain stemness of Glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells 2015; 33: 2400-2415. [DOI:10.1002/stem.2053] [PMID] [PMCID]
34. [34] McLean K, Gong Y, Choi Y, Deng N, Yang K, Bai S, et al. Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest 2011; 121: 3206-3219. [DOI:10.1172/JCI45273] [PMID] [PMCID]
35. [35] Kong BH, Shin HD, Kim SH, Mok HS, Shim JK, Lee JH, et al. Increased in vivo angiogenic effect of glioma stromal mesenchymal stem-like cells on glioma cancer stem cells from patients with glioblastoma. Int J Oncol 2013; 42: 1754-1762. [DOI:10.3892/ijo.2013.1856] [PMID]
36. [36] Langroudi L, Hassan ZM, Soleimani M, Hashemi SM. Tumor associated mesenchymal stromal cells show higher immunosuppressive and angiogenic properties compared to adipose derived MSCs. Iran J Immunol 2015; 12: 226-239.
37. [37] Montesinos JJ, Mora-García MD, Mayani H, Flores-Figueroa E, García-Rocha R, Fajardo-Orduña GR, et al. In vitro evidence of the presence of mesenchymal stromal cells in cervical cancer and their role in protecting cancer cells from cytotoxic T cell activity. Stem Cells Dev 2013; 22: 2508-2519. [DOI:10.1089/scd.2013.0084] [PMID] [PMCID]
38. [38] Del Papa B, Sportoletti P, Cecchini D, Rosati E, Balucani C, Baldoni S, et al. Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. Eur J Immunol 2013; 43: 182-187. [DOI:10.1002/eji.201242643] [PMID]
39. [39] Geling A, Steiner H, Willem M, Bally-Cuif L, Haass C. A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep 2002; 3: 688-694. [DOI:10.1093/embo-reports/kvf124] [PMID] [PMCID]
40. [40] Kabashima-Niibe A, Higuchi H, Takaishi H, Masugi Y, Matsuzaki Y, Mabuchi Y, et al. Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci 2013; 104: 157-164. [DOI:10.1111/cas.12059] [PMID] [PMCID]
41. [41] Kamga PT, Collo GD, Cassaro A, Bazzoni R, Delfino P, Adamo A, et al. Small molecule Inhibitors of microenvironmental Wnt/β-Catenin signaling enhance the chemosensitivity of acute myeloid leukemia. Cancers (Basel) 2020; 12: 1-16. [DOI:10.3390/cancers12092696] [PMID] [PMCID]
42. [42 Wu JI, Wang LH. J Biomed Sci.Emerging roles of gap junction proteins connexins in cancer metastasis, chemoresistance and clinical application 06 Biological Sciences 0601 Biochemistry and Cell Biology 11 Medical and Health Sciences 1112 Oncology and Carcinogenesis 2019; 26: 1-14. [DOI:10.1186/s12929-019-0497-x] [PMID] [PMCID]
43. [43] Mandel K, Yang Y, Schambach A, Glage S, Otte A, Hass R. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo. Stem Cells Dev 2013; 22: 3114-3127. [DOI:10.1089/scd.2013.0249] [PMID]
44. [44] Caicedo A, Fritz V, Brondello JM, Ayala M, Dennemont I, Abdellaoui N, et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep 2015; 5: 1-10. [DOI:10.1038/srep09073] [PMID] [PMCID]
45. [45] Li G, Bethune MT, Wong S, Joglekar AV, Michael T, Wang JK, et al. T cell antigen discovery via trogocytosis. Nat Methods 2019; 16: 183-190. [DOI:10.1038/s41592-018-0305-7] [PMID] [PMCID]
46. [46] Rafii A, Mirshahi P, Poupot M, Faussat AM, Simon A, Ducros E, et al. Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian tumours. PLoS One 2008; 3: e3894. [DOI:10.1371/journal.pone.0003894] [PMID] [PMCID]
47. [47] Castells M, Milhas D, Gandy C, Thibault B, Rafii A, Delord JP, Couderc B. Microenvironment mesenchymal cells protect ovarian cancer cell lines from apoptosis by inhibiting XIAP inactivation. Cell Death Dis 2013; 4: e887-889. [DOI:10.1038/cddis.2013.384] [PMID] [PMCID]
48. [48] Melzer C, Ohe J Von Der, Luo T, Hass R. Spontaneous fusion of MSC with breast cancer cells can generate tumor dormancy. Int J Mol Sci 2021; 22: 5930. [DOI:10.3390/ijms22115930] [PMID] [PMCID]
49. [49] Melzer C, von der Ohe J, Hass R. In vivo cell fusion between mesenchymal stroma/stem-like cells and breast cancer cells. Cancers (Basel). 2019; 11. [DOI:10.3390/cancers11020185] [PMID] [PMCID]
50. [50] Hass R, Ohe J Von Der, Ungefroren H. Potential role of msc/cancer cell fusion and emt for breast cancer stem cell formation Cancers (Basel) 2019; 11: 1-15. [DOI:10.3390/cancers11101432] [PMID] [PMCID]
51. [51] Oliveira Rodini C, Benites Gonçalves da Silva P, Faria Assoni A, Melechco Carvalho V, Keith Okamoto O. Mesenchymal stem cells enhance tumorigenic properties of human glioblastoma through independent cell-cell communication mechanisms. Oncotarget 2018; 9: 24766-24777. [DOI:10.18632/oncotarget.25346] [PMID] [PMCID]
52. [52] Chaturvedi P, Gilkes DM, Wong CC, Kshitiz, Luo W, Zhang H, et al. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest 2013; 123: 189-205. [DOI:10.1172/JCI69244] [PMID] [PMCID]
53. [53] Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol 2008; 294: 675-682. [DOI:10.1152/ajpcell.00437.2007] [PMID]
54. [54] Zhukareva V, Obrocka M, Houle JD, Fischer I, Neuhuber B. Secretion profile of human bone marrow stromal cells: donor variability and response to inflammatory stimuli. Cytokine 2010; 50: 317-321. [DOI:10.1016/j.cyto.2010.01.004] [PMID]
55. [55] Kantolati K, Ciettos C. Numerical analysis of a mechanotransduction dynamical model reveals homoclinic bifurcations of extracellular matrix mediated oscillations of the mesenchymal stem cell fate. arXiv preprint arXiv:1902.01481 (2019). [DOI:10.1016/j.ijnonlinmec.2019.04.001]
56. [56] English K, Mahon BP. Allogeneic mesenchymal stem cells: agents of immune modulation. J Cell Biochem 2011; 112: 1963-1968. [DOI:10.1002/jcb.23119] [PMID]
57. [57] Hendijani F, Javanmard SH, Rafiee L, Sadeghi-Aliabadi H. Effect of human Wharton's jelly mesenchymal stem cell secretome on proliferation, apoptosis and drug resistance of lung cancer cells. Res Pharm Sci 2015; 10: 134.
58. [58] Zhou K, Xia M, Tang B, Yang D, Liu N, Tang D, et al. Isolation and comparison of mesenchymal stem cell‑like cells derived from human gastric cancer tissues and corresponding ovarian metastases. Mol Med Rep 2016; 13: 1788-1794. [DOI:10.3892/mmr.2015.4735] [PMID]
59. [59] Velletri T, Xie N, Wang Y, Huang Y, Yang Q, Chen X, et al. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development. Cell Death Dis 2016; 7: e2015-e2015. [DOI:10.1038/cddis.2015.367] [PMID] [PMCID]
60. [60] Nishimura K, Semba S, Aoyagi K, Sasaki H, Yokozaki H. Mesenchymal stem cells provide an advantageous tumor microenvironment for the restoration of cancer stem cells. Pathobiology 2012; 79: 290-306. [DOI:10.1159/000337296] [PMID]
61. [61] Roorda BD, ter Elst A, Kamps WA, de Bont ES. Bone marrow-derived cells and tumor growth: contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells. Crit Rev Oncol Hematol 2009; 69: 187-198. [DOI:10.1016/j.critrevonc.2008.06.004] [PMID]
62. [62] Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov 2016; 16: 35-52. [DOI:10.1038/nrd.2016.193] [PMID]
63. [63] Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650-1659. [DOI:10.1056/NEJM198612253152606] [PMID]
64. [64] Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004; 4: 540-550. [DOI:10.1038/nrc1388] [PMID]
65. [65] Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 2008; 15: 730-738. [DOI:10.1038/gt.2008.39] [PMID]
66. [66] Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62: 3603-3608.
67. [67] Son B, Marquez‐Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006; 24: 1254-1264. [DOI:10.1634/stemcells.2005-0271] [PMID]
68. [68] Xie C, Yang Z, Suo Y, Chen Q, Wei D, Weng X, et al. Systemically infused mesenchymal stem cells show different homing profiles in healthy and tumor mouse models. Stem Cells Transl Med 2017; 6: 1120-1131. [DOI:10.1002/sctm.16-0204] [PMID] [PMCID]
69. [69] Svensson A, Ramos-Moreno T, Eberstål S, Scheding S, Bengzon J. Identification of two distinct mesenchymal stromal cell populations in human malignant glioma. J Neurooncol 2017; 131: 245-254. [DOI:10.1007/s11060-016-2302-y] [PMID] [PMCID]
70. [70] Ahmadian Kia N, Bahrami AR, Ebrahimi M, Matin MM, Neshati Z, Almohaddesin MR, et al. Comparative analysis of chemokine receptor's expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. J Mol Neurosci 2011; 44: 178-185. [DOI:10.1007/s12031-010-9446-6] [PMID]
71. [71] Guo HT, Cai CQ, Schroeder RA, Kuo PC. Nitric oxide is necessary for CC-class chemokine expression in endotoxin-stimulated ANA-1 murine macrophages. Immunol Lett 2002; 80: 21-26. [DOI:10.1016/S0165-2478(01)00284-X]
72. [72] Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 2007; 293: 1118-1128. [DOI:10.1152/ajpendo.00435.2007] [PMID]
73. [73] Winner M, Koong A, Rendon B, Zundel W, Mitchell R. Amplification of Tumor Hypoxic Responses by Macrophage Migration Inhibitory Factor-Dependent Hypoxia-Inducible Factor Stabilization. Cancer Res. 2007 January 1; 67(1): 186-193. [DOI:10.1158/0008-5472.CAN-06-3292] [PMID] [PMCID]
74. [74] Lazennec G, Lam PY. Recent discoveries concerning the tumor - mesenchymal stem cell interactions. Biochim Biophys Acta 2016; 1866: 290-299. [DOI:10.1016/j.bbcan.2016.10.004] [PMID]
75. [75] Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 2011; 121: 3804-3809. [DOI:10.1172/JCI57099] [PMID] [PMCID]
76. [76] Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, et al. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology 2013; 57: 2274-2286. [DOI:10.1002/hep.26257] [PMID]
77. [77] Guilloton F, Caron G, Ménard C, Pangault C, Amé-Thomas P, Dulong J, et al. Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes. Blood 2012; 119: 2556-2567. [DOI:10.1182/blood-2011-08-370908] [PMID]
78. [78] Behnan J, Isakson P, Joel M, Cilio C, Langmoen IA, Vik-Mo EO, Badn W. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression. Stem Cells 2014; 32: 1110-1123. [DOI:10.1002/stem.1614] [PMID]
79. [79] Klopp AH, Zhang Y, Solley T, Amaya-Manzanares F, Marini F, Andreeff M, et al. Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors. Clin Cancer Res 2012; 18: 771-782. [DOI:10.1158/1078-0432.CCR-11-1916] [PMID] [PMCID]
80. [80] Bayo J, Fiore E, Aquino JB, Malvicini M, Rizzo M, Peixoto E, et al. Increased migration of human mesenchymal stromal cells by autocrine motility factor (AMF) resulted in enhanced recruitment towards hepatocellular carcinoma. PLoS One 2014; 9: e95171. [DOI:10.1371/journal.pone.0095171] [PMID] [PMCID]
81. [81] Zhang T, Lee YW, Rui YF, Cheng TY, Jiang XH, Li G. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther 2013; 4: 70. [DOI:10.1186/scrt221] [PMID] [PMCID]
82. [82] Wang M, Zhao X, Qiu R, Gong Z, Huang F, Yu W, et al. Lymph node metastasis-derived gastric cancer cells educate bone marrow-derived mesenchymal stem cells via YAP signaling activation by exosomal Wnt5a. Oncogene 2021; 40: 2296-2308. [DOI:10.1038/s41388-021-01722-8] [PMID] [PMCID]
83. [83] Yang Y, Bucan V, Baehre H, Von Der Ohe J, Otte A, Hass R. Acquisition of new tumor cell properties by MSC-derived exosomes. Int J Oncol 2015; 47: 244-252. [DOI:10.3892/ijo.2015.3001] [PMID]
84. [84] Figueroa J, Phillips LM, Shahar T, Hossain A, Gumin J, Kim H, et al. Exosomes from Glioma-Associated mesenchymal stem cells increase the tumorigenicity of Glioma stem-like cells via transfer of miR-1587. Cancer Res 2017; 77: 5808-5819. [DOI:10.1158/0008-5472.CAN-16-2524] [PMID] [PMCID]
85. [85] Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008; 18: 500-507. [DOI:10.1038/cr.2008.40] [PMID]
86. [86] Mirabdollahi M, Sadeghi-Aliabadi H, Javanmard SH. Human Wharton's jelly mesenchymal stem cells-derived secretome could inhibit breast cancer growth in vitro and in vivo. Iran J Basic Med Sci 2020; 23: 945-953.
87. [87] Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med 2006; 203: 1235-1247. [DOI:10.1084/jem.20051921] [PMID] [PMCID]
88. [88] Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004; 11: 1155-1164. [DOI:10.1038/sj.gt.3302276] [PMID]
89. [89] Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M. Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 2003; 75: 248-255. [DOI:10.1016/j.yexmp.2003.06.001] [PMID]
90. [90] Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 2013; 8: e84256. [DOI:10.1371/journal.pone.0084256] [PMID] [PMCID]
91. [91] Yu B, Zhang X, Li X. Acquisition of new tumor cell properties by MSC-derived exosomes. Int. J. Mol. Sci. 2014; 15: 4142- 4157. [DOI:10.3390/ijms15034142] [PMID] [PMCID]
92. [92] Del Fattore A, Luciano R, Saracino R, Battafarano G, Rizzo C, Pascucci L, et al. Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opin Biol Ther 2015; 15: 495-504. [DOI:10.1517/14712598.2015.997706] [PMID]
93. [93] Rivera-Cruz CM, Shearer JJ, Figueiredo Neto M, Figueiredo ML. The immunomodulatory effects of mesenchymal stem cell polarization within the tumor microenvironment niche. Stem Cells Int 2017; 2017: 4015039. [DOI:10.1155/2017/4015039] [PMID] [PMCID]
94. [94] Sasser AK, Mundy BL, Smith KM, Studebaker AW, Axel AE, Haidet AM, et al. Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer Lett 2007; 254: 255-264. [DOI:10.1016/j.canlet.2007.03.012] [PMID]
95. [95] Li, Wei, Ying Zhou, Jin Yang, Xu Zhang, Huanhuan Zhang, Ting Zhang, Shaolin Zhao, Ping Zheng, Juan Huo, Huiyi Wu. Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8. Journal of Experimental & Clinical Cancer Research 34, no. 1 (2015): 1-15. [DOI:10.1186/s13046-015-0172-3] [PMID] [PMCID]
96. [96] Bruno S, Collino F, Iavello A, Camussi G. Effects of mesenchymal stromal cell-derived extracellular vesicles on tumor growth. Front Immunol 2014; 5: 382. [DOI:10.3389/fimmu.2014.00382] [PMID] [PMCID]
97. [97] Yan XL, Fu CJ, Chen L, Qin JH, Zeng Q, Yuan HF, et al. Mesenchymal stem cells from primary breast cancer tissue promote cancer proliferation and enhance mammosphere formation partially via EGF/EGFR/Akt pathway. Breast Cancer Res Treat 2012; 132: 153-164. [DOI:10.1007/s10549-011-1577-0] [PMID]
98. [98] Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 2018; 59: 455-467.
99. [99] Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9: 669-676. [DOI:10.1038/nm0603-669] [PMID]
100. [100] Detmar M, Yeo KT, Nagy JA, Van de Water L, Brown LF, Berse B, et al. Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Invest Dermatol 1995; 105: 44-50. [DOI:10.1111/1523-1747.ep12312542] [PMID]
101. [101] Eming SA, Krieg T. Molecular mechanisms of VEGF-A action during tissue repair. J Investig Dermatology Symp Proc 2006; 11: 79-86. [DOI:10.1038/sj.jidsymp.5650016] [PMID]
102. [102] Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 2004; 164: 1935-1947. [DOI:10.1016/S0002-9440(10)63754-6]
103. [103] Frank S, Hübner G, Breier G, Longaker MT, Greenhalgh DG, Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem 1995; 270: 12607-12613. [DOI:10.1074/jbc.270.21.12607] [PMID]
104. [104] Romano Di Peppe S, Mangoni A, Zambruno G, Spinetti G, Melillo G, Napolitano M, Capogrossi MC. Adenovirus-mediated VEGF(165) gene transfer enhances wound healing by promoting angiogenesis in CD1 diabetic mice. Gene Ther 2002; 9: 1271-1277. [DOI:10.1038/sj.gt.3301798] [PMID]
105. [105] Howdieshell TR, Callaway D, Webb WL, Gaines MD, Procter CDJ, Sathyanarayana, et al. Antibody neutralization of vascular endothelial growth factor inhibits wound granulation tissue formation. J Surg Res 2001; 96: 173-182. [DOI:10.1006/jsre.2001.6089] [PMID]
106. [106] Javan MR, Khosrojerdi A, Moazzeni SM. New insights into implementation of mesenchymal stem cells in cancer therapy: prospects for anti-angiogenesis treatment. Front Oncol 2019; 9: 1-17. [DOI:10.3389/fonc.2019.00840] [PMID] [PMCID]
107. [107] Khoury CC, Ziyadeh FN. Angiogenic factors. Contrib Nephrol 2011; 170: 83-92. [DOI:10.1159/000324950] [PMID]
108. [108] Ucuzian AA, Gassman AA, East AT, Greisler HP. Molecular mediators of angiogenesis. J Burn Care Res 2010; 31: 158-175. [DOI:10.1097/BCR.0b013e3181c7ed82] [PMID] [PMCID]
109. [109] Ocana A, Nieto-Jiménez C, Pandiella A, Templeton AJ. Neutrophils in cancer: prognostic role and therapeutic strategies. Mol Cancer 2017; 16: 1-7. [DOI:10.1186/s12943-017-0707-7] [PMID] [PMCID]
110. [110] Tevis KM, Cecchi RJ, Colson YL, Grinstaff MW. Mimicking the tumor microenvironment to regulate macrophage phenotype and assessing chemotherapeutic efficacy in embedded cancer cell/macrophage spheroid models. Acta Biomater. 2017;50:271-279. doi:10.1016/j.actbio.2016.12.037. [DOI:10.1016/j.actbio.2016.12.037] [PMID] [PMCID]
111. [111] Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309-322. [DOI:10.1016/j.ccr.2012.02.022] [PMID]
112. [112] Liu Y, Han ZP, Zhang SS, Jing YY, Bu XX, Wang CY, et al. Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J Biol Chem 2011; 286: 25007-25015. [DOI:10.1074/jbc.M110.213108] [PMID] [PMCID]
113. [113] Lee KE, Khoi PN, Xia Y, Park JS, Joo YE, Kim KK, et al. Helicobacter pylori and interleukin-8 in gastric cancer. World J Gastroenterol 2013; 19: 8192. [DOI:10.3748/wjg.v19.i45.8192] [PMID] [PMCID]
114. [114] Kim JH, Frantz AM, Anderson KL, Graef AJ, Scott MC, Robinson S, et al. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment. Exp Cell Res 2014; 323: 155-164. [DOI:10.1016/j.yexcr.2014.02.020] [PMID] [PMCID]
115. [115] Yin J, Zeng F, Wu N, Kang K, Yang Z, Yang H. Interleukin-8 promotes human ovarian cancer cell migration by epithelial-mesenchymal transition induction in vitro. Clin Transl Oncol 2015; 17: 365-370. [DOI:10.1007/s12094-014-1240-4] [PMID]
116. [116] Komaki M, Numata Y, Morioka C, Honda I, Tooi M, Yokoyama N, et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther 2017; 8: 1-12. [DOI:10.1186/s13287-017-0660-9] [PMID] [PMCID]
117. [117 Ren W, Hou J, Yang C, Wang H, Wu S, Wu Y, Zhao X, Lu C. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery J Exp Clin Cancer Res 2019; 38: 1-14. [DOI:10.1186/s13046-019-1027-0] [PMID] [PMCID]
118. [118] Zitvogel L, Apetoh L, Ghiringhelli F, André F, Tesniere A, Kroemer G. The anticancer immune response: indispensable for therapeutic success? J Clin Invest 2008; 118: 1991-2001. [DOI:10.1172/JCI35180] [PMID] [PMCID]
119. [119] Meissner M, Reichert TE, Kunkel M, Gooding W, Whiteside TL, Ferrone S, Seliger B. Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin Cancer Res 2005; 11: 2552-2560. [DOI:10.1158/1078-0432.CCR-04-2146] [PMID]
120. [120] Shevach EM. Fatal attraction: tumors beckon regulatory T cells. Nat Med 2004; 10: 900-901. [DOI:10.1038/nm0904-900] [PMID]
121. [121] Bogen B. Peripheral T cell tolerance as a tumor escape mechanism: deletion of CD4+ T cells specific for a monoclonal immunoglobulin idiotype secreted by a plasmacytoma. Eur J Immunol 1996; 26: 2671-2679. [DOI:10.1002/eji.1830261119] [PMID]
122. [122] Wu SZ, Roden DL, Wang C, Holliday H, Harvey K, Cazet AS, et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J 2020; 39: e104063. [DOI:10.15252/embj.2019104063]
123. [123] Berger L, Shamai Y, Skorecki KL, Tzukerman M. Tumor specific recruitment and reprogramming of mesenchymal stem cells in tumorigenesis. Stem Cells 2016; 34: 1011-1026. [DOI:10.1002/stem.2269] [PMID]
124. [124] Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C, et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα. Cell Stem Cell 2012; 11: 812-824. [DOI:10.1016/j.stem.2012.08.013] [PMID] [PMCID]
125. [125] Poggi A, Giuliani M. Mesenchymal stromal cells can regulate the immune response in the tumor microenvironment. Vaccines 2016; 4: 1-21. [DOI:10.3390/vaccines4040041] [PMID] [PMCID]
126. [126] Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 2013; 13: 392-402. [DOI:10.1016/j.stem.2013.09.006] [PMID]
127. [127] Giallongo C, Romano A, Parrinello NL, La Cava P, Brundo MV, Bramanti V, et al. Mesenchymal stem cells (MSC) regulate activation of granulocyte-like myeloid derived suppressor cells (G-MDSC) in chronic myeloid leukemia patients. PLoS One 2016; 11: e0158392. [DOI:10.1371/journal.pone.0158392] [PMID] [PMCID]
128. [128] Giallongo C, Tibullo D, Parrinello NL, La Cava P, Di Rosa M, Bramanti V, et al. Granulocyte-like myeloid derived suppressor cells (G-MDSC) are increased in multiple myeloma and are driven by dysfunctional mesenchymal stem cells (MSC). Oncotarget 2016; 7: 85764. [DOI:10.18632/oncotarget.7969] [PMID] [PMCID]
129. [129] Galland S, Vuille J, Martin P, Letovanec I, Caignard A, Fregni G, Stamenkovic I. Tumor-derived mesenchymal stem cells use distinct mechanisms to block the activity of natural killer cell subsets. Cell Rep 2017; 20: 2891-2905. [DOI:10.1016/j.celrep.2017.08.089] [PMID]
130. [130] Liotta F, Querci V, Mannelli G, Santarlasci V, Maggi L, Capone M, et al. Mesenchymal stem cells are enriched in head neck squamous cell carcinoma, correlates with tumour size and inhibit T-cell proliferation. Br J Cancer 2015; 112: 745-754. [DOI:10.1038/bjc.2015.15] [PMID] [PMCID]
131. [131] Pelizzo G, Veschi V, Mantelli M, Croce S, Di Benedetto V, et al. Microenvironment in neuroblastoma: isolation and characterization of tumor-derived mesenchymal stromal cells. BMC Cancer 2018; 18: 1-12. [DOI:10.1186/s12885-018-5082-2] [PMID] [PMCID]
132. [132] Arnulf B, Lecourt S, Soulier J, Ternaux B, Lacassagne MN, Crinquette A, et al. Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia 2007; 21: 158-163. [DOI:10.1038/sj.leu.2404466] [PMID]
133. [133] Wang M, Chen B, Sun XX, Zhao XD, Zhao YY, Sun L, et al. Gastric cancer tissue-derived mesenchymal stem cells impact peripheral blood mononuclear cells via disruption of Treg/Th17 balance to promote gastric cancer progression. Exp Cell Res 2017; 361: 19-29. [DOI:10.1016/j.yexcr.2017.09.036] [PMID]
134. [134] Cao W, Cao K, Cao J, Wang Y, Shi Y. Mesenchymal stem cells and adaptive immune responses. Immunol Lett 2015; 168: 147-153. [DOI:10.1016/j.imlet.2015.06.003] [PMID]
135. [135] Ghannam S, Pène J, Torcy-Moquet G, Jorgensen C, Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 2010; 185: 302-312. [DOI:10.4049/jimmunol.0902007] [PMID]
136. [136] Liu X, Ren S, Qu X, Ge C, Cheng K, Zhao RC. Mesenchymal stem cells inhibit Th17 cells differentiation via IFN-γ-mediated SOCS3 activation. Immunol Res 2015; 61: 219-229. [DOI:10.1007/s12026-014-8612-2] [PMID]
137. [137] Tumangelova-Yuzeir K, Naydenov E, Ivanova-Todorova E, Krasimirova E, Vasilev G, Nachev S, Kyurkchiev D. Mesenchymal stem cells derived and cultured from glioblastoma multiforme increase tregs, downregulate Th17, and induce the tolerogenic phenotype of monocyte-derived cells. Stem Cells Int 2019; 2019: 1-15. [DOI:10.1155/2019/6904638] [PMID] [PMCID]
138. [138] Ghosh T, Barik S, Bhuniya A, Dhar J, Dasgupta S, Ghosh S, et al. Tumor-associated mesenchymal stem cells inhibit naïve T cell expansion by blocking cysteine export from dendritic cells. Int J Cancer 2016; 139: 2068-2081. [DOI:10.1002/ijc.30265] [PMID]
139. [139] Sineh Sepehr K, Razavi A, Hassan ZM, Fazel A, Abdollahpour-Alitappeh M, Mossahebi-Mohammadi M, et al. Comparative immunomodulatory properties of mesenchymal stem cells derived from human breast tumor and normal breast adipose tissue. Cancer Immunol Immunother 2020; 69: 1841-1854. [DOI:10.1007/s00262-020-02567-y] [PMID]
140. [140] Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer 2021; 21: 162-180. [DOI:10.1038/s41568-020-00320-2] [PMID]
141. [141] Osmani F, Rasekhi A, Hajizadeh E, Akbari ME. Simultaneous modeling of multiple recurrences in breast cancer patients. Koomesh. 2020 Apr 10;22(2):359-64. [DOI:10.29252/koomesh.22.2.359]
142. [142] Komoda H, Okura H, Lee CM, Sougawa N, Iwayama T, Hashikawa T, Saga A, Yamamoto-Kakuta A, Ichinose A, Murakami S, Sawa Y, Matsuyama A. Reduction of N-glycolylneuraminic acid xenoantigen on human adipose tissue-derived stromal cells/mesenchymal stem cells leads to safer and more useful cell sources for various stem cell therapies. Tissue Eng Part A. 2010 Apr;16(4):1143-55. [DOI:10.1089/ten.tea.2009.0386] [PMID]
143. [143] Lim EJ, Suh Y, Kim S, Kang SG, Lee SJ. Force-mediated proinvasive matrix remodeling driven by tumor-associated mesenchymal stem-like cells in glioblastoma. BMB Rep 2018; 51: 182-187. [DOI:10.5483/BMBRep.2018.51.4.185] [PMID] [PMCID]
144. [144] Lim EJ, Suh Y, Yoo KC, Lee JH, Kim IG, Kim MJ, et al. Tumor-associated mesenchymal stem-like cells provide extracellular signaling cue for invasiveness of glioblastoma cells. Oncotarget 2017; 8: 1438-1448. [DOI:10.18632/oncotarget.13638] [PMID] [PMCID]
145. [145] Turley EA, Noble PW, Bourguignon LY. Signaling properties of hyaluronan receptors. J Biol Chem 2002; 277: 4589-4592. [DOI:10.1074/jbc.R100038200] [PMID]
146. [146] Toole BP. Hyaluronan-CD44 Interactions in Cancer: Paradoxes and Possibilities. Clin Cancer Res 2009; 15: 7462-7468. [DOI:10.1158/1078-0432.CCR-09-0479] [PMID] [PMCID]
147. [147] Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 2004; 4: 528-539. [DOI:10.1038/nrc1391] [PMID]
148. [148] Zhang X, Hu F, Li G, Li G, Yang X, Liu L, Zhang R, Zhang B, Feng Y. Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling. Cell death & disease. 2018 Jan 18;9(2):1-3. [DOI:10.1038/s41419-017-0176-3] [PMID] [PMCID]
149. [149] Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010; 73: 1907-1920. [DOI:10.1016/j.jprot.2010.06.006] [PMID]
150. [150] Heidari N, Abbasi H, Namaki S, Hashemi SM. Application of extracellular vesicles in the treatment of inflammatory bowel disease. Koomesh. 2020 Apr 10;22(2):209-19. [DOI:10.29252/koomesh.22.2.209]
151. [151] Skog J, Würdinger T, Van Rijn S, Meijer DH, Gainche L, Curry WT, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10: 1470-1476. [DOI:10.1038/ncb1800] [PMID] [PMCID]
152. [152] Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 2012; 151: 1542-1556. [DOI:10.1016/j.cell.2012.11.024] [PMID]
153. [153] Wang M, Zhao C, Shi H, Zhang B, Zhang L, Zhang X, et al. Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers and a mechanism for gastric cancer. Br J Cancer 2014; 110: 1199-1210. [DOI:10.1038/bjc.2014.14] [PMID] [PMCID]
154. [154] Roccaro AM, Scadden DT, Ghobrial IM, Roccaro AM, Sacco A, Maiso P, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 2013; 123: 1542-1555. [DOI:10.1172/JCI66517] [PMID] [PMCID]
155. [155] Nakata R, Shimada H, Fernandez GE, Fanter R, Fabbri M, Malvar J, et al. Contribution of neuroblastoma-derived exosomes to the production of pro-tumorigenic signals by bone marrow mesenchymal stromal cells. J Extracell vesicles 2017; 6: 1332941. [DOI:10.1080/20013078.2017.1332941] [PMID] [PMCID]
156. [156] Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: Cancer-associated fibroblasts and their markers. Int J Cancer 2020; 146: 895-905. [DOI:10.1002/ijc.32193] [PMID] [PMCID]
157. [157] Tommelein J, Verset L, Boterberg T, Demetter P, Bracke M, De Wever O. Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Front Oncol 2015; 5: 1-11. [DOI:10.3389/fonc.2015.00063] [PMID] [PMCID]
158. [158] Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 2020; 20: 174-186. [DOI:10.1038/s41568-019-0238-1] [PMID] [PMCID]
159. [159] Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 2014; 159: 80-93. [DOI:10.1016/j.cell.2014.08.007] [PMID] [PMCID]
160. [160] Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-Dependent manner. Cancer Cell 2010; 17: 135-147. https://doi.org/10.1016/j.ccr.2009.12.041 [DOI:10.1016/j.ccr.2010.04.018] [PMID]
161. [161] Paunescu V, Bojin FM, Tatu CA, Gavriliuc OI, Rosca A, Gruia AT, et al. Tumour-associated fibroblasts and mesenchymal stem cells: more similarities than differences. J Cell Mol Med 2011; 15: 635-646. [DOI:10.1111/j.1582-4934.2010.01044.x] [PMID] [PMCID]
162. [162] Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M, Higashi Y, et al. Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer 2010; 127: 2323-2333. [DOI:10.1002/ijc.25440] [PMID]
163. [163] Madar S, Goldstein I, Rotter V. 'Cancer associated fibroblasts'--more than meets the eye. Trends Mol Med 2013; 19: 447-453. [DOI:10.1016/j.molmed.2013.05.004] [PMID]
164. [164] Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392-401. [DOI:10.1038/nrc1877] [PMID]
165. [165] Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 2011; 19: 257-272. [DOI:10.1016/j.ccr.2011.01.020] [PMID] [PMCID]
166. [166] Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, Fazioli F, et al. Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo. FASEB J 2011; 25: 2022-2030. [DOI:10.1096/fj.10-179036] [PMID]
167. [167] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674. [DOI:10.1016/j.cell.2011.02.013] [PMID]
168. [168] Ren F, Sheng WQ, Du X. CD133: a cancer stem cells marker, is used in colorectal cancers. World J Gastroenterol 2013; 19: 2603-2611. [DOI:10.3748/wjg.v19.i17.2603] [PMID] [PMCID]
169. [169] Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 2008; 118: 2111-2120. [DOI:10.1172/JCI34401] [PMID] [PMCID]
170. [170] Diaz-Cano SJ. Tumor heterogeneity: mechanisms and bases for a reliable application of molecular marker design. Int J Mol Sci 2012; 13: 1951-2011. [DOI:10.3390/ijms13021951] [PMID] [PMCID]
171. [171] Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011; 71: 614-624. [DOI:10.1158/0008-5472.CAN-10-0538] [PMID] [PMCID]
172. [172] Wu XB, Liu Y, Wang GH, Xu X, Cai Y, Wang HY, et al. Mesenchymal stem cells promote colorectal cancer progression through AMPK/mTOR-mediated NF-κB activation. Sci Rep 2016; 6: 1-12. [DOI:10.1038/srep21420] [PMID] [PMCID]
173. [173] Luo J, Lee SO, Cui Y, Yang R, Li L, Chang C. Infiltrating bone marrow mesenchymal stem cells (BM-MSCs) increase prostate cancer cell invasion via altering the CCL5/HIF2α/androgen receptor signals. Oncotarget 2015; 6: 27555-27565. [DOI:10.18632/oncotarget.4515] [PMID] [PMCID]
174. [174] van der Zee M, Sacchetti A, Cansoy M, Joosten R, Teeuwssen M, Heijmans-Antonissen C, et al. IL6/JAK1/STAT3 signaling blockade in endometrial cancer affects the ALDHhi/CD126+ stem-like component and reduces tumor burden. Cancer Res 2015; 75: 3608-3622. [DOI:10.1158/0008-5472.CAN-14-2498] [PMID]
175. [175] Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9: 641-650. [DOI:10.1002/jor.1100090504] [PMID]
176. [176] Orbay H, Tobita M, Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications. Stem Cells Int 2012; 2012. [DOI:10.1155/2012/461718] [PMID] [PMCID]
177. [177] Ciavarella S, Dominici M, Dammacco F, Silvestris F. Mesenchymal stem cells: a new promise in anticancer therapy. Stem Cells Dev 2011; 20: 1-10. [DOI:10.1089/scd.2010.0223] [PMID]
178. [178] Dai LJ, Moniri MR, Zeng ZR, Zhou JX, Rayat J, Warnock GL. Potential implications of mesenchymal stem cells in cancer therapy. Cancer Lett 2011; 305: 8-20. [DOI:10.1016/j.canlet.2011.02.012] [PMID]
179. [179] Shahrabi S, Mansournezhad S, Azizidoost S, Jorfi F, Saki N. Challenges for treatment of cardiovascular diseases based on stem cells. Koomesh. 2019 Jun 10;21(3):395-407.
180. [180] Chang KA, Lee JH, Suh YH. Therapeutic potential of human adipose-derived stem cells in neurological disorders. J Pharmacol Sci 2014; 126: 293-301. [DOI:10.1254/jphs.14R10CP] [PMID]
181. [181] Kamalabadi-Farahani M, Vasei M, Ahmadbeigi N, Ebrahimi-Barough S, Soleimani M, Roozafzoon R. Anti-tumour effects of TRAIL-expressing human placental derived mesenchymal stem cells with curcumin-loaded chitosan nanoparticles in a mice model of triple negative breast cancer. Artif Cells Nanomedicine Biotechnol 2018; 46: S1011-S1021. [DOI:10.1080/21691401.2018.1527345] [PMID]
182. [182] Bahman Soufiani K, Pourfathollah AA, Nikougoftar Zarifi M, Arefian E. Tumor microenvironment changing through application of microRNA-34a related mesenchymal stem cells conditioned medium: modulation of breast cancer cells toward non-aggressive behavior. Iran J Allergy Asthma Immunol 2021; 20: 221-232. [DOI:10.18502/ijaai.v20i2.6055] [PMID]
183. [183] Hombach AA, Geumann U, Günther C, Hermann FG, Abken H. IL7-IL12 engineered mesenchymal stem cells (MSCs) improve A CAR T cell attack against colorectal cancer cells. Cells 2020; 9: 873. [DOI:10.3390/cells9040873] [PMID] [PMCID]
184. [184] Babajani A, Soltani P, Jamshidi E, Farjoo MH, Niknejad H. Recent advances on drug-loaded mesenchymal stem cells with anti-neoplastic agents for targeted treatment of cancer. Front Bioeng Biotechnol 2020; 8: 1-19. [DOI:10.3389/fbioe.2020.00748] [PMID] [PMCID]
185. [185] Moradian Tehrani R, Verdi J, Noureddini M, Salehi R, Salarinia R, Mosalaei M, et al. Mesenchymal stem cells: A new platform for targeting suicide genes in cancer. J Cell Physiol 2018; 233: 3831-3845. [DOI:10.1002/jcp.26094] [PMID]
186. [186] Sabet MN, Esfeh MK, Nasrabadi N, Shakarami M, Alani B, Alimolaie A, et al. Mesenchymal stem cells as professional actors in gastrointestinal cancer therapy: From Naïve to genetically modified. Iran J Basic Med Sci 2021; 24: 561-576.
187. [187] Torsvik A, Bjerkvig R. Mesenchymal stem cell signaling in cancer progression. Cancer Treat Rev 2013; 39: 180-188. [DOI:10.1016/j.ctrv.2012.03.005] [PMID]
188. [188] Xu H, Zhou Y, Li W, Zhang B, Zhang H, Zhao S, et al. Tumor-derived mesenchymal-stem-cell-secreted IL-6 enhances resistance to cisplatin via the STAT3 pathway in breast cancer. Oncol Lett 2018; 15: 9142-9150. [DOI:10.3892/ol.2018.8463] [PMID] [PMCID]
189. [189] Ren T, Shan J, Qing Y, Qian C, Li Q, Lu G, et al. Sequential treatment with AT-101 enhances cisplatin chemosensitivity in human non-small cell lung cancer cells through inhibition of apurinic/apyrimidinic endonuclease 1-activated IL-6/STAT3 signaling pathway. Drug Des Devel Ther 2014; 8: 2517-2529. [DOI:10.2147/DDDT.S71432] [PMID] [PMCID]
190. [190] Rodriguez-Barrueco R, Yu J, Saucedo-Cuevas LP, Olivan M, Llobet-Navas D, Putcha P, et al. Inhibition of the autocrine IL-6-JAK2-STAT3-calprotectin axis as targeted therapy for HR-/HER2+ breast cancers. Genes Dev 2015; 29: 1631-1648. [DOI:10.1101/gad.262642.115] [PMID] [PMCID]
191. [191] Lee HY, Hong IS. Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential. Cancer Sci 2017; 108: 1939-1946. [DOI:10.1111/cas.13334] [PMID] [PMCID]
192. [192] Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell 2005; 7: 513-520. [DOI:10.1016/j.ccr.2005.05.024] [PMID]
193. [193] Li P, Gong Z, Shultz LD, Ren G. Mesenchymal stem cells: From regeneration to cancer. Pharmacol Ther 2019; 200: 42-54. [DOI:10.1016/j.pharmthera.2019.04.005] [PMID] [PMCID]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zamani F, Oraee-Yazdani S, Langroudi L, Hashemi S M. Role of mesenchymal stem cells in growth and progression of cancer and prospective potentials in cancer therapy. Koomesh 1400; 24 (1) :1-25
URL: http://koomeshjournal.semums.ac.ir/article-1-6870-fa.html

زمانی فرشید، اورعی یزدانی سعید، لنگرودی لادن، هاشمی سید محمود. سلول‌های بنیادی مزانشیمی و نقش آن‌ها در رشد و گسترش سرطان و پتانسیل‌های درمان سرطان. كومش. 1400; 24 (1) :1-25

URL: http://koomeshjournal.semums.ac.ir/article-1-6870-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
جلد 24، شماره 1 - ( بهمن و اسفند 1400 ) برگشت به فهرست نسخه ها
کومش Koomesh
Persian site map - English site map - Created in 0.06 seconds with 42 queries by YEKTAWEB 4645