چکیده

سایه و هدف: با توجه به رشد روزافزون جمعیت شهرها، همچنین افزایش سالیانه مصرف سرانه در این جوامع

بیویژه در کشورهایی که در اقیمیان خشک و نبیع خشک قرار دارند، امکان استفاده از منابع سطحی به منظور تأمین آب

شب در شهرها و به کاهش نیاز است: به طوری که در سال 1380 ه ش به خاطر آب آب در سه سالن، کار و لازمی

بیش از 70 درصد از آب آشامیدنی مصرف تهران از منابع زیرزمینی تأمین گردیده، اما این ارقام در سایر شهرهای ایران نیز

رو به افزایش است. از طرفی به عنوان تخلیه فاضلاب های صنعتی حاوی آب و نیکل در چاه های جذبی و چاه های شنای

این ترکیبات در منابع آب های زیرزمینی با توجه به خاصیت تجمیع پذیری این ترکیبات در بافت های مختلف بدن و

خواص سرطان زایی آن سر به تحقیقات مختلف به اثبات رسیده است لیکن دقت کننده در طبق این منابع احساس می گردد.

هدف از این تحقیق بهمکاری و روش مناسب بر حسب فلزات سنجش از منابع آب های زیرزمینی است.

مطالعه و روشهای این مطالعه با استفاده از عصاره و میوه بلوط Quercus Brantii sub Belangri

درک ترکیبات اسید تانیک کندناسه، اسید تانیک قابل هیدرولیز، اسید کالیک و الکسی اسید می باشد. اقدام به حذف

کروم و نیکل از منابع آب های زیرزمینی آب به فاضلاب گردید. ابتدا در این سه سالن، کار و لازمی

حاوی مقادیر مختلف کروم و نیکل به غلظت معلوم در 12 گروه با غلظت شرایط مختلط تهیه شد. با روش

نمونه برداری غیراختیاری و تجربی اثرات متقابل عصاره تانی، هیدروکسید کلسیم و هیدروکسید سدیم به‌صورت

جداگانه و هم زمان مورد مطالعه قرار گرفت. با توجه به غلظت‌های اولیه عصاره مقدار غلظت باقیمانده از طریق دستگاه

جمه ابی بوسیله‌ی شعله تیمین غلظت 50 میلی گرم بر لیتر

همدروکسید کلسیم با غلظت 50 میلی گرم بر لیتر هیدروکسید سدیم به همراه 50 میلی گرم بر لیتر عصاره تانی

درصد با راندمان 10 تا 88 درصد بهترین شرایط در حذف کروم و نیکل از محیط وایش می باشد. صحت و دقت نتایج

بدست آمده به کمک آزمون آثالز واریانس دو عاملی با یک تکرار در هر خانه ارایی گردید.

یافته‌ها: نتایج بدست آمده نشان می‌دهد کاربرد هیپرازمان دو عامل جذبیت کننده هیدروکسید کلسیم و عصاره تانی

دان دار تفاوت داری نسبت به سایر روش های مقایسه دارد. همچنین ثابت گردید که عصاره تانی در یک

میکرو فیلتر با تکامل سری کام مخلوط تانی (OH) به علت مخرب مواد گردیده در سراسر بدن گلوکس و به علت

مه تریکنولولی که مناسب اشباع شدن آنها با کانین مواد به شورت توده فلزات در آب‌ها و به علت

سنگینی، بالا قرار داشته می‌شود. همچنین عصاره موجود قادم است یون مورد نظر را در غلظت‌های کم

تا زیادی از میخک واکنش حلال کننده در راندمان حفظ نمی‌شود. به کمک عصاره تانی در میزان مصرف این مواد به شدت کاهش یافته و راندمان حفظ ارتقا می‌یابد.

واژه‌های کلیدی: کروم، نیکل، تصفیه فاضلاب، میوه بلوط.
يكي از این تركبات، ساختار موجود در جوهر بلوط است که حاوی اسید گالیک و اسید تانیک یا تانین می‌باشد. از نظر شیمیایی تانین‌ها ترکیبات بسیار بی‌چیده‌ای هستند. جدا کردن آنها بسیار مشکل بوده و غیرقابل تهیه می‌باشد. تشکیل تانین‌ها بی‌چیده معمولاً از بلهردی زند تهیه شده و پیش از سه‌یابنی ساده حاصل می‌گردد. همچنین تانین‌ها در آت هیدرولیز، تولید فنل‌های ساده به‌همراه تکیه نظر پیرگالول، کاتشول و با اسید الازیک می‌باشد [6].

غونه این تغییرات هیدرولیزی در شکل 1 مشخص گردیده است.

\[\text{Hexahydroxy diphenic acid} \]

\[\text{Pyrrogallic acid} \]

\[\text{Gallates} \]

\[\text{Katchhol} \]

به منظور سهولت در تشخیص تانین، می‌توان گروه‌های (Proanthocyanidin) نیز گفت. می‌شود و اسید تانیک جزء این گروه قرار گیرد. تقسیم نود (علت این نام‌گذاری به دلیل یک‌کار بردن پروآنتوساید سایه» شکسته پوست‌هایی کربن-کربنیک توسط اسید گرم می‌باشد [11].

شکل 2 ساختار مولکولی‌های تانین قابل هیدرولیز و کنی‌شده‌ها را نشان می‌دهد [1].

\[\text{Hydrolyzable tannins} \]

\[\text{Condensed tannins} \]

رویه حضور و اکتشافات از انواع کمیکلس کنی‌شده‌ها به

\[\text{Heavy metals} \]

\[\text{PH} \]

\[\text{CO}_2 \]

\[\text{CO}_2 \]

\[\text{Acid} \]
Proanthocyanidin oligomer

Gallic acid

Hexahydroxy – diphenic acid

Quercus Brantii sub Belangri
من خلال طرق مختلفة، يمكن توليد مركبات كيميائية من بيوسترزيت. هذه المركبات تستخدم بشكل أساسي في العديد من الأغراض، بما في ذلك التعامل مع عوامل التلف في الأنسجة. [9]

الشكل 3. بيوسترزيت كأداة كيميائية في طرق تحليل الأنسجة.

هات من بين هذه الأشياء، من الممكن أن يكون بيوسترزيت هو أكثر استيعابًا من بيوسترزيت. هذا هو المقصود بـ "الياك"، حيث يمكن أن يكون مركبًا كيميائيًا متكاملًا قادرًا على مساعدة في فهم الأشياء في الأقسام المختلفة.

الشكل 4. بيوسترزيت كأداة كيميائية في طرق تحليل الأنسجة.

هات من بين هذه الأشياء، من الممكن أن يكون بيوسترزيت هو أكثر استيعابًا من بيوسترزيت. هذا هو المقصود بـ "الياك"، حيث يمكن أن يكون مركبًا كيميائيًا متكاملًا قادرًا على مساعدة في فهم الأشياء في الأقسام المختلفة.

مجلة علمي دانغاه علوم يرشكي سمنان
جلد 6، برزوه، 1، پايين 1383

مواد و روشها
حرف کروم و نیکل از منابع آب آلوده به...

محمدرضا سعیدی نژاد و احمدضا یزدانیخ

شدن و در مرحله تنظیم پیس از گذشت 15 دقیقه از یک آبی ایمنی زیر سطح گونه به کمک پیت جهت آزمایش کدورت و تغییر مقدار فاز باقیمانده. فضای بارداری و بهترین PH شرایط PH و کدورت هر آزمایش از اندازه‌گیری گردیده (12).

معدل HACH تست‌گاه کدورت منبع استفاده نام 2001 A و مقدار اندازه‌گیری شده بر حسب NTU (Nephelometric turbidity unit) تست‌گاه پی اچ استفاده N 301 برای PH اندازه‌گیری و تست‌گاه جذب اقیانوس ANA180 مدل 180 به کار گرفته شد.

برای کلیه فازات 3 مرحله آزمایش به شرح زیر انجام گردید. در مرحله اول 50 میلی‌گرم بر لیتر عصاره نتان دار به علاوه 50 میلی‌گرم بر لیتر هیدروکسید کلسیم، در مرحله دوم ۵۰ میلی‌گرم عصاره نتان دار به علاوه ۵۰ میلی‌گرم بر لیتر هیدروکسید سدیم، در مرحله سوم ۵۰ میلی‌گرم عصاره نتان به تناوب با و در مرحله چهارم ۵۰ میلی‌گرم هیدروکسید کلسیم به تناوب مورد استفاده قرار گرفت.

تایپ آزمایشات فوق در جدول 1 تا 3 خلاصه‌گردد.

بحث و نتیجه‌گیری

با توجه به مجموع اطلاعات جمع‌آوری شده و مقایسه آنها با مدل‌های آماری مشخص گردید که آنالیز واریانس در عامل با یک تکرار در هر خانه، قابلیت برداری و تحلیل اطلاعات جمع‌آوری شده را دار [2]. در این آزمون اگر در هر خانه از آزمایش عاملی مانند p × q فقط یک مشاهده وجود داشته باشد لیفت هیت تغییر درون خانه‌ای را مشاهده کرد. بنابراین هیت بر اساس مستقیم از خطا آزمایش خواهیم داشت. این مدل‌های دیگر، می‌توانند در مدل‌های زیرین‌دارهای مشاهده شده بذرهای لیفت.

\[X_{ij} = \mu + \alpha_i + \beta_j + e_{ij} \]
\[X_{ij} = \mu + \alpha_i + \beta_j + e_{ij} + \alpha \beta \]

در فرمول 1 هیت گونه‌ای اندازه‌گیری را با اینکه شدهای، نام یافتند. تمام منابع تغییر به غیر از اثرات اصلی به عناوین فضایی از امکان می‌باشد. می‌تواند آنها را با شرح زیر انجام گردید. ۱۰۰ میلی‌لیتر بوته نمونه را به روش تزئینی در داخل ارلن ۲۵ میلی‌لیتر که حاوی ۱۰۰ میلی‌لیتر آب مقطور می‌باشد. ۲۴ ساعت با حلال خود قرار داده می‌شود آنها گونه‌ها را روی بی ماری به دقت ۲ ساعت گرم کرده و عمل صاف کردن روی آن انجام شد. نتایج مانده را فیلتر کاذبی را مجددا با ۱۰۰ میلی‌لیتر آب مقطور به دقت ۲۴ ساعت تا ماه داده و مراحل صاف کردن و شستشوی فیلتر را تکرار و حجم نهایی به ۵۰ میلی‌لیتر رسیده شود.

با توجه به نتایج بدست آمده، مشخص گردید که از مناطق همانند Quercus Brantii sub Belangri تا به‌طور کامل هم‌آب و با بررسی های انجام شده این داده در شرایط آزمایشگاهی تعداد ۶۰ گونه آب حاوی مقادیر مختلف کروم و نیکل با غلظت معلوم در ۱۲ گروه و با غلظت و شرایط مختل مختلف به شدت با روش ثانویه‌ای غیرتحتالی و غیرآزمایش متقابل عصاره نتان. هیدروکسید کلسیم و هیدروکسید سدیم به‌صورت جداگانه و همزمان مورد مطالعه قرار گرفت.

در این آزمایش از ۴ بیر ۱/۵ لیتری کپک‌های با یک لیتر

فونه استفاده شد و با آزمایشات متعدد مشخص بهترین غلظت. جهت تشکیل فلک (Floc) و تمیز کننده مطلوب طبق زمان استاندارد ۵۰ میلی‌گرم در لیتر هیدروکسید کلسیم، ۵۰ میلی‌گرم در لیتر هیدروکسید سدیم و ۵۰ میلی‌گرم در لیتر عصاره جوهر بلوط قابل استفاده با است [10] در مرحله اول اختراع غیر محتمل به دقت با سرعت ۸۰ کم در دقیقه کاملاً غلظت گردید. سپس در مرحله اختراع کند، گونه‌ها به دقت ۱۵ دقیقه و با سرعت ۲۰ دور در دقیقه به منظور افزایش حجم فلک‌های تشکیل شده. غلظت
لذلك، همچنانی جانه‌ی از دو ماده کمک منطق‌کننده PH هیدروکسی کلسیم و هیدروکسید سدیم به منظور کنترل استفاده‌گردد و غلظت‌های یک تا ۰۰۰ میلی‌گرم بر لیتر به میوه تغذیه‌ای‌های سبز در غلظت ۵۰ میلی‌گرم بر لیتر در هر دو ماده کمک منطق‌کننده با اندام‌های دیگر در حدود ۸۰ تا ۸۲ درصد نمایند. ۵۰ میلی‌گرم بر لیتر کروم ۴۰ از طرفی را به ۲۱ تا ۲۲ میلی‌گرم بر لیتر کاهش می‌یابد. همچنین نتایج به‌کارگیری هیدروکسید سدیم نشان می‌دهد که کدوز تغذیه به حدود ۸ تا ۸ از ۱۰ واحد را بصرف کاهش داده است.

NTU

<table>
<thead>
<tr>
<th>pH اولیه</th>
<th>pH نهایی</th>
<th>NTU</th>
<th>pH اولیه</th>
<th>pH نهایی</th>
<th>NTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶/۵</td>
<td>۶/۱</td>
<td>۵/۰</td>
<td>۶/۴</td>
<td>۶/۱</td>
<td>۵/۰</td>
</tr>
<tr>
<td>۶/۷</td>
<td>۶/۱</td>
<td>۵/۰</td>
<td>۶/۴</td>
<td>۶/۱</td>
<td>۵/۰</td>
</tr>
<tr>
<td>۶/۴</td>
<td>۶/۱</td>
<td>۵/۰</td>
<td>۶/۴</td>
<td>۶/۱</td>
<td>۵/۰</td>
</tr>
<tr>
<td>۶/۱</td>
<td>۵/۰</td>
<td>۴/۰</td>
<td>۶/۴</td>
<td>۶/۱</td>
<td>۵/۰</td>
</tr>
<tr>
<td>۶/۸</td>
<td>۵/۰</td>
<td>۳/۰</td>
<td>۶/۴</td>
<td>۶/۱</td>
<td>۵/۰</td>
</tr>
<tr>
<td>۶/۵</td>
<td>۵/۰</td>
<td>۲/۰</td>
<td>۶/۴</td>
<td>۶/۱</td>
<td>۵/۰</td>
</tr>
<tr>
<td>۶/۲</td>
<td>۴/۰</td>
<td>۱/۰</td>
<td>۶/۴</td>
<td>۶/۱</td>
<td>۵/۰</td>
</tr>
<tr>
<td>۶/۹</td>
<td>۳/۰</td>
<td>۰/۰</td>
<td>۶/۴</td>
<td>۶/۱</td>
<td>۵/۰</td>
</tr>
<tr>
<td>۶/۶</td>
<td>۲/۰</td>
<td>۱/۰</td>
<td>۶/۴</td>
<td>۶/۱</td>
<td>۵/۰</td>
</tr>
<tr>
<td>۶/۳</td>
<td>۱/۰</td>
<td>۰/۰</td>
<td>۶/۴</td>
<td>۶/۱</td>
<td>۵/۰</td>
</tr>
</tbody>
</table>

* تغییرات غلظت هیدروکسی کلسیم و هیدروکسید سدیم اضافه شده در سیستم‌های (۱) و (۲) به محیط واکنش به عنوان عامل کنترل کننده pH
جدول 2. بررسی تغییرات pH کدورت کروم (3) با غلظت اولیه 5 میلی گرم بر لیتر به کمک هیدروکسید کلسیم و عصاره نانی دار هیدروکسید سدیم و عصاره نانی دار.

<table>
<thead>
<tr>
<th>NaOH(2)</th>
<th>Ca(OH)₂(1)</th>
<th>تغییرات غلظت</th>
<th>pH اولیه</th>
<th>کدورت اولیه</th>
<th>pH اولیه</th>
<th>عصاره نانی دار</th>
<th>pH اولیه</th>
<th>pH اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>غلظت</td>
<td>کدورت</td>
<td>غلظت</td>
<td>pH اولیه</td>
<td>غلظت</td>
<td>pH اولیه</td>
<td>غلظت</td>
<td>pH اولیه</td>
<td>غلظت</td>
</tr>
<tr>
<td>تاننیه</td>
<td></td>
<td>تاننیه</td>
<td></td>
<td>تاننیه</td>
<td></td>
<td>تاننیه</td>
<td></td>
<td>تاننیه</td>
</tr>
<tr>
<td>25</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
</tr>
<tr>
<td>37</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
</tr>
<tr>
<td>34</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
</tr>
<tr>
<td>27</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
</tr>
</tbody>
</table>

نتایج جدول 3 نشان می‌دهد که استفاده از غلظت 50 میلی گرم بر لیتر، نتیج را به 8 تا 9 میلی گرم بر لیتر بررسی کرد. همچنین با اضافه کردن 10 میلی گرم بر لیتر ماده کمک منعکس‌کننده، میزان کدورت تا 84 درصد جدید می‌گردد.

با راندمانی در حدود 82 درصد میزان 50 میلی گرم بر لیتر، نتیج را به 8 تا 9 میلی گرم بر لیتر بررسی کرد. همچنین با اضافه کردن 10 میلی گرم بر لیتر ماده کمک منعکس‌کننده، میزان کدورت تا 84 درصد جدید می‌گردد.

جدول 3. بررسی تغییرات pH کدورت و نتیج با غلظت اولیه 5 میلی گرم بر لیتر به کمک هیدروکسید کلسیم و عصاره نانی دار هیدروکسید سدیم و عصاره نانی دار.

<table>
<thead>
<tr>
<th>NaOH(2)</th>
<th>Ca(OH)₂(1)</th>
<th>تغییرات غلظت</th>
<th>pH اولیه</th>
<th>کدورت اولیه</th>
<th>pH اولیه</th>
<th>عصاره نانی دار</th>
<th>pH اولیه</th>
<th>pH اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>غلظت</td>
<td>کدورت</td>
<td>غلظت</td>
<td>pH اولیه</td>
<td>غلظت</td>
<td>pH اولیه</td>
<td>غلظت</td>
<td>pH اولیه</td>
<td>غلظت</td>
</tr>
<tr>
<td>تاننیه</td>
<td></td>
<td>تاننیه</td>
<td></td>
<td>تاننیه</td>
<td></td>
<td>تاننیه</td>
<td></td>
<td>تاننیه</td>
</tr>
<tr>
<td>25</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
</tr>
<tr>
<td>37</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
</tr>
<tr>
<td>34</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
</tr>
<tr>
<td>27</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
<td>0</td>
<td>3/68</td>
<td>44</td>
</tr>
</tbody>
</table>

نتایج جدول 3 نشان می‌دهد که استفاده از غلظت 50 میلی گرم بر لیتر، نتیج را به 8 تا 9 میلی گرم بر لیتر بررسی کرد. همچنین با اضافه کردن 10 میلی گرم بر لیتر ماده کمک منعکس‌کننده، میزان کدورت تا 84 درصد جدید می‌گردد.

با راندمانی در حدود 82 درصد میزان 50 میلی گرم بر لیتر، نتیج را به 8 تا 9 میلی گرم بر لیتر بررسی کرد. همچنین با اضافه کردن 10 میلی گرم بر لیتر ماده کمک منعکس‌کننده، میزان کدورت تا 84 درصد جدید می‌گردد.

جدول 3. بررسی تغییرات pH کدورت و نتیج با غلظت اولیه 5 میلی گرم بر لیتر به کمک هیدروکسید کلسیم و عصاره نانی دار هیدروکسید سدیم و عصاره نانی دار.
تشکر و قدردانی

بدینوسلیب مراتب تشکر و قدردانی خود را نسبت به معاونت بروهشی دانشگاه علوم پزشکی شهید بهشتی که امکانات مالی و آزمایشگاهی لازم جهت انجام این تحقیق فراهم نموده‌اند اعلام می‌گویم.

نتایج جدول ۳ که بر مبنای آنالیز واریانس دو عاملی با یک تکرار در هر خانه، تدوین گردیده نشان می‌دهد که اثر کنترل گروه‌های PH برای حدف نیکل دارای تفاوت معنی‌داری است. در حالی که این اثر برای کروم +۶ دارای تفاوت معنی‌داری نبوده‌است. همچنین تأثیرات نوع غلظت در رابطه با هر دو نوع کمک معنی‌داری دارای تفاوت معنی‌داری می‌باشد.

جدول ۴. آنالیز واریانس میزان غلظت‌های نانویی کروم (۴۳۶ و ۴۷۶) و نیکل با در نظر گرفت دو ماده، هیدروکسید کلسیم و هیدروکسید سدیم در مجاورت عصاره‌های نانویی

<table>
<thead>
<tr>
<th>عنوان مرحلات</th>
<th>جمع‌یافته میزان‌های خطا</th>
<th>درجه آزادی</th>
<th>مقادیر F</th>
<th>P-Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>یک</td>
<td>میزان‌های نانویی (۴۳۶)</td>
<td>۶</td>
<td>۲۵/۷۵</td>
<td>-</td>
</tr>
<tr>
<td>۱</td>
<td>میزان‌های نانویی (۴۷۶)</td>
<td>۱</td>
<td>۹۰/۷۵</td>
<td>-</td>
</tr>
<tr>
<td>۲</td>
<td>اثر کنترل کپن، های PH</td>
<td>۲</td>
<td>۹۰/۷۵</td>
<td>-</td>
</tr>
<tr>
<td>۳</td>
<td>اثر نوع غلظت</td>
<td>۵</td>
<td>۲۸۵/۲۵</td>
<td>-</td>
</tr>
<tr>
<td>۴</td>
<td>کروم غلظت (۴۷۱)</td>
<td>۵</td>
<td>۷۲/۷۵</td>
<td>-</td>
</tr>
<tr>
<td>کل برای کروم (۴۳۶)</td>
<td>۱۱</td>
<td>۱۲۰/۲۷</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>کل برای کروم (۴۷۱)</td>
<td>۱۱</td>
<td>۲۴۲/۷۹</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

P-Value* < 0.05

منابع