اکثر مکاتبات کومش از طریق ایمیل سایت می باشد. لطفا Spam ایمیل خود را نیز چک نمایید.
   [صفحه اصلی ]   [Archive] [ English ]  
:: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
کار آزمایی بالینی::
تماس با ما::
تسهیلات پایگاه::
::
هزینه چاپ مقاله در کومش
با توجه به تصمیمات گرفته شده جهت پذیرش مقالات در مجله کومش از نویسندگان مقاله هزینه دریافت می گردد. هزینه پذیرش مقالات از ابتدای سال 1402 در مجله کومش  مبلغ 12.000.000ریال (یک میلیون و دویست هزار تومان) می باشد. که نویسنده مسئول می بایست جهت دریافت نامه پذیرش به حساب درآمد های دانشگاه واریز نمایند تا گواهی پذیرش مقاله صادر و مراحل بعدی انتشار مقاله انجام شود.
تبصره: این مصوبه شامل مقالاتی که نویسنده مسئول مقاله از همکاران دانشگاه علوم پزشکی سمنان باشد نمی شود.
..
لیست داوران پیشنهادی
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Citations87554266
h-index3821
i10-index272121

..
:: جلد 24، شماره 1 - ( بهمن و اسفند 1400 ) ::
جلد 24 شماره 1 صفحات 48-38 برگشت به فهرست نسخه ها
مروری بر نقش میکروRNA ها به‌عنوان نشانگرهای زیستی در بیماری آلزایمر
عادله جعفری ، بهروز خاکپور طالقانی ، پروانه کشاورز ، محمد آخوندیان ، لیلا علی دوست
چکیده:   (1604 مشاهده)
میکروRNA‌ها، مولکول‌های RNA کوچک و محافظت‌شده‌ای هستند که بیان ژن‌ها را پس از رونویسی از راه تجزیه mRNA یا مهار پروتئین‌سازی تنظیم می‌کنند. عملکرد این مولکول‌ها برای بسیاری از فرایندهای سلولی از جمله رشد، نمو، تمایز، هومئوستاز، آپوپتوز، پیری و مقاومت به استرس حیاتی است. علاوه بر این، برخی بیماری‌ها از قبیل سرطان و بیماری‌های تحلیل برنده عصبی از جمله آلزایمر با نقصان میکروRNA همراه هستند. میکروRNA‌ها در مایعات بیولوژیکی بسیار پایدار هستند، در مغز به وفور یافت می‌شوند و بر فرایندهای دخیل در شروع و پیشرفت آلزایمر اثر تنظیمی دارند. در حال حاضر، تشخیص زود هنگام آلزایمر به‌عنوان شایع‌ترین بیماری زوال عقل، به راحتی امکان‌پذیر نیست. با یافتن نشانگرهای زیستی قابل اعتماد و دارای حساسیت بالا به ویژه در مراحل ابتدایی بیماری، مداخلات برای کسب نتیجه بالینی بهتر در زمان بهینه‌تر انجام خواهد شد. از این‌رو، میکروRNA‌ها، پتانسیل بزرگی به عنوان نشانگرهای زیستی تشخیصی و پیش‌آگهی‌دهنده دارند. در عین حال، تعدیل آن‌ها می‌تواند یک استراتژی درمانی بالقوه در برابر بیماری آلزایمر باشد. هدف از این مطالعه مروری، تشریح میکروRNA‌ها، زیست‌زایی و نقش آن‌ها در بیماری‌زایی آلزایمر و بررسی اهمیت این مولکول‌ها در نقش نشانگرهای زیستی تشخیصی است
واژه‌های کلیدی: میکروRNA، آلزایمر، نشانگر زیستی
متن کامل [PDF 1174 kb]   (522 دریافت)    
نوع مطالعه: مروري | موضوع مقاله: مروري
دریافت: 1399/12/24 | پذیرش: 1400/4/14 | انتشار: 1400/10/30
فهرست منابع
1. [1] Lane CA, Hardy J, Schott JM. Alzheimer's disease. Eur J Neurol 2018; 25: 59-70. [DOI:10.1111/ene.13439] [PMID]
2. [2] McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: Report of the NINCDS‐ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984; 34: 939-939. [DOI:10.1212/WNL.34.7.939] [PMID]
3. [3] Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 2013; 9: e1003569. [DOI:10.1371/journal.pgen.1003569] [PMID] [PMCID]
4. [4] Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458: 223-227. [DOI:10.1038/nature07672] [PMID] [PMCID]
5. [5] Li SC, Chan WC, Hu LY, Lai CH, Hsu CN, Lin WC. Identification of homologous microRNAs in 56 animal genomes. Genomics 2010; 96: 1-9. [DOI:10.1016/j.ygeno.2010.03.009] [PMID]
6. [6] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297. [DOI:10.1016/S0092-8674(04)00045-5]
7. [7] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-854. [DOI:10.1016/0092-8674(93)90529-Y]
8. [8] Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007; 8: 93-103. [DOI:10.1038/nrg1990] [PMID]
9. [9] Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. The EMBO J 2002; 21: 4663-4670. [DOI:10.1093/emboj/cdf476] [PMID] [PMCID]
10. [10] Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y, Davidson BL. Structure and activity of putative intronic miRNA promoters. Rna 2010; 16: 495-505. [DOI:10.1261/rna.1731910] [PMID] [PMCID]
11. [11] Davis-Dusenbery BN, Hata A. Mechanisms of control of microRNA biogenesis. J Biochem 2010; 148: 381-392. [DOI:10.1093/jb/mvq096] [PMID] [PMCID]
12. [12] Wang Z, Yao H, Lin Sh, Zhu X, Shen Z, Lu G, et al., Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett 2013; 331: 1-10. [DOI:10.1016/j.canlet.2012.12.006] [PMID]
13. [13] Truscott M, Islam AB, Frolov MV. Novel regulation and functional interaction of polycistronic miRNAs. Rna 2016; 22: 129-138. [DOI:10.1261/rna.053264.115] [PMID] [PMCID]
14. [14] Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10: 126-139. [DOI:10.1038/nrm2632] [PMID]
15. [15] Thomas M, Lieberman J, Lal A. Desperately seeking microRNA targets. Nat Struct Mol Biol 2010; 17: 1169-1174. [DOI:10.1038/nsmb.1921] [PMID]
16. [16] Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A 2006; 103: 2746-2751. [DOI:10.1073/pnas.0511045103] [PMID] [PMCID]
17. [17] Chalmel F, Rolland AD, Niederhauser-Wiederkehr C, Chung SS, Demougin P, Gattiker A, et al. The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci U S A 2007; 104: 8346-8351. [DOI:10.1073/pnas.0701883104] [PMID] [PMCID]
18. [18] Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014. 2014. [DOI:10.1155/2014/970607] [PMID] [PMCID]
19. [19] Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 2016; 17: 1712. [DOI:10.3390/ijms17101712] [PMID] [PMCID]
20. [20] Vidigal JA, Ventura A. The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol 2015; 25: 137-147. [DOI:10.1016/j.tcb.2014.11.004] [PMID] [PMCID]
21. [21] Qavi AJ, Kindt JT, Bailey RC. Sizing up the future of microRNA analysis. Anal Bioanal Chem 2010; 398: 2535-2549. [DOI:10.1007/s00216-010-4018-8] [PMID] [PMCID]
22. [22] Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 2004; 5: R68. [DOI:10.1186/gb-2004-5-9-r68] [PMID] [PMCID]
23. [23] Lundstrom K. Micro-RNA in disease and gene therapy. Curr Drug Discover Technol 2011; 8: 76-86. [DOI:10.2174/157016311795563857] [PMID]
24. [24] Rusek AM, Abba M, Eljaszewicz A, Moniuszko M, Niklinski J, Allgayer H. MicroRNA modulators of epigenetic regulation, the tumor microenvironment and the immune system in lung cancer. Mol Cancer 2015; 14: 34. [DOI:10.1186/s12943-015-0302-8] [PMID] [PMCID]
25. [25] Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer's disease. Med Princ Pract 2015; 24: 1-10. [DOI:10.1159/000369101] [PMID] [PMCID]
26. [26] O'Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci 2011; 34: 185-204. [DOI:10.1146/annurev-neuro-061010-113613] [PMID] [PMCID]
27. [27] Nunomura A, Castellani RJ, Lee HG, Moreira PI, Zhu X, Perry G, Smith MA. Neuropathology in Alzheimer's disease: awaking from a hundred-year-old dream. Sci Aging Knowledge Environ 2006; 8: pe10. [DOI:10.1126/sageke.2006.8.pe10] [PMID]
28. [28] Sadigh-Eteghad S, Talebi M, Farhoudi M. Association of apolipoprotein E epsilon 4 allele with sporadic late onset Alzheimer's disease. A meta-analysis. Neurosciences (Riyadh) 2012; 17: 321-326.
29. [29] Wildsmith KR, Holley M, Savage JC, Skerrett R, Landreth GE. Evidence for impaired amyloid β clearance in Alzheimer's disease. Alzheimer's Res Ther 2013; 5: 1-6. [DOI:10.1186/alzrt187] [PMID] [PMCID]
30. [30] Crimins JL, Pooler A, Polydoro M, Luebke JI, Spires-Jones TL. The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer's disease. Ageing Res Rev 2013; 12: 757-763. [DOI:10.1016/j.arr.2013.03.002] [PMID] [PMCID]
31. [31] Davidowitz EJ, Chatterjee I, Moe JG. Targeting tau oligomers for therapeutic development for Alzheimer's disease and tauopathies. Biotechnology 2008; 4: 47-64.
32. [32] Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular pathogenesis of Alzheimer's disease: an update. Ann Neurosci 2017; 24: 46-54. [DOI:10.1159/000464422] [PMID] [PMCID]
33. [33] Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 2000; 33: 95-130. [DOI:10.1016/S0165-0173(00)00019-9]
34. [34] Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 2004; 43: 321-332. [DOI:10.1016/j.neuron.2004.07.003] [PMID]
35. [35] Blurton-Jones M, LaFerla FM. Pathways by which Aβ facilitates tau pathology. Curr Alzheimer Res 2006; 3: 437-448. [DOI:10.2174/156720506779025242] [PMID]
36. [36] Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 2007; 18: 297-300. [DOI:10.1097/WNR.0b013e3280148e8b] [PMID]
37. [37] Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, et al. Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimer's Dis 2008; 14: 27-41. [DOI:10.3233/JAD-2008-14103] [PMID]
38. [38] Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci U S A 2008; 105: 6415-6420. [DOI:10.1073/pnas.0710263105] [PMID] [PMCID]
39. [39] Patel N, oang D, Miller N, Ansaloni S, Huang Q, Rogers JT, et al. MicroRNAs can regulate human APP levels. Mol Neurodegener 2008; 3: 1-6. [DOI:10.1186/1750-1326-3-10] [PMID] [PMCID]
40. [40] Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A, Strooper BD. MicroRNA regulation of Alzheimer's Amyloid precursor protein expression. Neurobiol Dis 2009; 33: 422-428. [DOI:10.1016/j.nbd.2008.11.009] [PMID]
41. [41] Long JM, Ray B, Lahiri DK. MicroRNA-153 physiologically inhibits expression of amyloid-β precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J Biol Chem 2012; 287: 31298-31310. [DOI:10.1074/jbc.M112.366336] [PMID] [PMCID]
42. [42] Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008; 28: 1213-1223. [DOI:10.1523/JNEUROSCI.5065-07.2008] [PMID] [PMCID]
43. [43] Nelson PT, Wang WX. MiR-107 is reduced in Alzheimer's disease brain neocortex: validation study. J Alzheimer's Dis 2010; 21: 75-79. [DOI:10.3233/JAD-2010-091603] [PMID] [PMCID]
44. [44] Shu B, Zhang X, Du G, Fu Q, Huang L. MicroRNA-107 prevents amyloid-β-induced neurotoxicity and memory impairment in mice. Int J Mol Med 2018; 41: 1665-1672. [DOI:10.3892/ijmm.2017.3339]
45. [45] Li X, Li Y, Zhao L, Zhang D, Yao X, Zhang H, et al. Circulating muscle-specific miRNAs in Duchenne muscular dystrophy patients. Mol Ther Nucleic Acids 2014; 3: e177. [DOI:10.1038/mtna.2014.29] [PMID] [PMCID]
46. [46] Garza-Manero S, Arias C, Bermúdez-Rattoni F, Vaca L, Zepeda A. Identification of age-and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease. Front Cell Neurosci 2015; 9: 53. [DOI:10.3389/fncel.2015.00053] [PMID] [PMCID]
47. [47] Maciotta Rolandin S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 2013; 7: 265. [DOI:10.3389/fncel.2013.00265] [PMID] [PMCID]
48. [48] Hernandez-Rapp J, Rainone S, Goupil C, Dorval V, Smith PY, Saint-Pierre M, et al. microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer's disease triple transgenic mice. Sci Rep 2016; 6: 1-11. [DOI:10.1038/srep30953] [PMID] [PMCID]
49. [49] Wang M, Qin L, Tang B. MicroRNAs in Alzheimer's disease. Front Genet 2019; 10: 153. [DOI:10.3389/fgene.2019.00153] [PMID] [PMCID]
50. [50] Kao YC, Wang I, Tsai KJ. miRNA-34c overexpression causes dendritic loss and memory decline. Int J Mol Sci 2018; 19: 2323. [DOI:10.3390/ijms19082323] [PMID] [PMCID]
51. [51] Ross SP, Baker KE, Fisher A, Hoff L, Pak ES, Murashov AK. miRNA-431 prevents amyloid-β-induced synapse loss in neuronal cell culture model of Alzheimer's disease by silencing kremen1. Front Cell Neurosci 2018; 12: 87. [DOI:10.3389/fncel.2018.00087] [PMID] [PMCID]
52. [52] Pichler S, Gu W, Hartl D, Gasparoni G, Leidinger P, Keller A, et al. The miRNome of Alzheimer's disease: consistent downregulation of the miR-132/212 cluster. Neurobiol Aging 2017; 50: 167. e1-167. e10. [DOI:10.1016/j.neurobiolaging.2016.09.019] [PMID]
53. [53] Zhu L, Li J, Dong N, Guan F, Liu Y, Ma D, Goh EL, Chen T. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice. Sci Rep 2016; 6: 1-13. [DOI:10.1038/srep36993] [PMID] [PMCID]
54. [54] Wu Q, Ye X, Xiong Y, Zhu H, Miao J, Zhang W, Wan J. The protective role of microRNA-200c in Alzheimer's disease pathologies is induced by beta amyloid-triggered endoplasmic reticulum stress. Front Mol Neurosci 2016; 9: 140. [DOI:10.3389/fnmol.2016.00140] [PMID] [PMCID]
55. [55] Arena A, Iyer AM, Milenkovic I, Kovacs GG, Ferrer I, Perluigi M, Aronica E. Developmental expression and dysregulation of miR-146a and miR-155 in Down's syndrome and mouse models of Down's syndrome and Alzheimer's disease. Curr Alzheimer Res 2017; 14: 1305-1317. [DOI:10.2174/1567205014666170706112701] [PMID]
56. [56] Zheng D, Sabbagh JJ, Blair LJ, Darling AL, Wen X, Dickey CA. MicroRNA-511 binds to FKBP5 mRNA, which encodes a chaperone protein, and regulates neuronal differentiation. J Biol Chem 2016; 291: 17897-17906. [DOI:10.1074/jbc.M116.727941] [PMID] [PMCID]
57. [57] Ghasemi-Kasman M, Shojaei A, Gol M, Moghadamnia AA, Baharvand H, Javan M. miR-302/367-induced neurons reduce behavioral impairment in an experimental model of Alzheimer's disease. Mol Cell Neurosci 2018; 86: 50-57. [DOI:10.1016/j.mcn.2017.11.012] [PMID]
58. [58] Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: an integrative review. Prog Neurobiol 2017; 156: 1-68. [DOI:10.1016/j.pneurobio.2017.03.004] [PMID]
59. [59] Tiribuzi R, Crispoltoni L, Porcellati S, Lullo MD, Florenzano F, Pirro M, et al. miR128 up-regulation correlates with impaired amyloid β (1-42) degradation in monocytes from patients with sporadic Alzheimer's disease. Neurobiol Aging 2014; 35: 345-356. [DOI:10.1016/j.neurobiolaging.2013.08.003] [PMID]
60. [60] Zhao Y, Jaber V, Lukiw WJ. Over-expressed pathogenic miRNAs in Alzheimer's disease (AD) and prion disease (PrD) drive deficits in TREM2-mediated Aβ42 peptide clearance. Front Aging Neurosci 2016; 8: 140. [DOI:10.3389/fnagi.2016.00140] [PMID] [PMCID]
61. [61] Zhou Y, Deng J, Chu X, Zhao Y, Guo Y. Role of post-transcriptional control of calpain by miR-124-3p in the development of Alzheimer's disease. J Alzheimer's Dis 2019; 67: 571-581. [DOI:10.3233/JAD-181053] [PMID]
62. [62] Li J, Chen W, Yi Y, Tong Q. miR‐219‐5p inhibits tau phosphorylation by targeting TTBK1 and GSK‐3β in Alzheimer's disease. J Cell Biochem 2019; 120: 9936-9946. [DOI:10.1002/jcb.28276] [PMID]
63. [63] Hernandez-Rapp J, Smith PY, Filali M, Goupil C, Planel E, Magill ST, et al. Memory formation and retention are affected in adult miR-132/212 knockout mice. Behav Brain Res 2015; 287: 15-26. [DOI:10.1016/j.bbr.2015.03.032] [PMID]
64. [64] Jafari A, Noursadeghi E, Eliassi A. Altered activity and expression of rat brain mitochondrial ATP-sensitive potassium channel in an Aβ-treated model of Alzheimer's disease. 2015.
65. [65] Keymoradzadeh A, Hedayati Ch M, Abedinzade M, Gazor R, Rostampour M, Khakpour Taleghani B. Enriched environment effect on lipopolysaccharide-induced spatial learning, memory impairment and hippocampal inflammatory cytokine levels in male rats. Behav Brain Res 2020; 394: 112814. [DOI:10.1016/j.bbr.2020.112814] [PMID]
66. [66] Rashtiani S, Goudarzi I, Jafari A, Rohampour K. Adenosine monophosphate activated protein kinase (AMPK) is essential for the memory improving effect of adiponectin. Neurosci Lett 2021; 749: 135721. [DOI:10.1016/j.neulet.2021.135721] [PMID]
67. [67] Swarbrick S, Wragg N, Ghosh S, Stolzing A. Systematic review of miRNA as biomarkers in Alzheimer's disease. Mol Neurobiol 2019; 56: 6156-6167. [DOI:10.1007/s12035-019-1500-y] [PMID] [PMCID]
68. [68] Masoodi TA, Al Shammari SA, Al-Muammar MN, Alhamdan AA. Screening and evaluation of deleterious SNPs in APOE gene of Alzheimer's disease. Neurol Res Int 2012; 2012: 480609. [DOI:10.1155/2012/480609] [PMID] [PMCID]
69. [69] Gerrish A, Russo G, Richards A, Moskvina V, Ivanov D, Harold D, et al. The role of variation at AβPP, PSEN1, PSEN2, and MAPT in late onset Alzheimer's disease. J Alzheimer's Dis 2012; 28: 377-387. [DOI:10.3233/JAD-2011-110824] [PMID] [PMCID]
70. [70] Hudson G, Sims R, Harold D, Chapman J, Hollingworth P, Gerrish A, et al. No consistent evidence for association between mtDNA variants and Alzheimer disease. Neurology 2012; 78: 1038-1042. [DOI:10.1212/WNL.0b013e31824e8f1d] [PMID] [PMCID]
71. [71] Fiţa IG, Enciu AM, Stănoiu B. New insights on Alzheimer's disease diagnostic. RomJMorphol Embryol 2011; 52: 975-979.
72. [72] Cressatti M, Juwara L, Galindez JM, Velly AM, Nkurunziza ES, Marier S, et al. Salivary microR‐153 and microR‐223 levels as potential diagnostic biomarkers of idiopathic Parkinson's disease. Mov Disord 2020; 35: 468-477. [DOI:10.1002/mds.27935] [PMID]
73. [73] Wu HZ, Ong KL, Seeher K, Armstrong NJ, Thalamuthu A, Brodaty H, et al. Circulating microRNAs as biomarkers of Alzheimer's disease: a systematic review. J Alzheimer's Dis 2016; 49: 755-766. [DOI:10.3233/JAD-150619] [PMID]
74. [74] Zhang M, Han W, Xu Y, Li D, Xue Q. Serum miR-128 serves as a potential diagnostic biomarker for Alzheimer's disease. Neuropsychiatr Dis Treat 2021; 17: 269. https://doi.org/10.2147/NDT.S306151 [DOI:10.2147/NDT.S290925]
75. [75] Wang R, Zhang J. Clinical significance of miR-433 in the diagnosis of Alzheimer's disease and its effect on Aβ-induced neurotoxicity by regulating JAK2. Exp Gerontol 2020; 141: 111080. [DOI:10.1016/j.exger.2020.111080] [PMID]
76. [76] Yang Q, Zhao Q, Yin Y. miR‑133b is a potential diagnostic biomarker for Alzheimer's disease and has a neuroprotective role. Exper Ther Med 2019; 18: 2711-2718. [DOI:10.3892/etm.2019.7855] [PMID] [PMCID]
77. [77] Kou X, Chen D, Chen N. The regulation of microRNAs in Alzheimer's disease. Front Neurol 2020; 11. [DOI:10.3389/fneur.2020.00288] [PMID] [PMCID]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

jafari A, Khakpour Taleghani B, Keshavarz P, Akhoondian M, Alidoust L. Role of microRNA as a biomarker in Alzheimer’s disease. Koomesh 1400; 24 (1) :38-48
URL: http://koomeshjournal.semums.ac.ir/article-1-6953-fa.html

جعفری عادله، خاکپور طالقانی بهروز، کشاورز پروانه، آخوندیان محمد، علی دوست لیلا. مروری بر نقش میکروRNA ها به‌عنوان نشانگرهای زیستی در بیماری آلزایمر. كومش. 1400; 24 (1) :38-48

URL: http://koomeshjournal.semums.ac.ir/article-1-6953-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
جلد 24، شماره 1 - ( بهمن و اسفند 1400 ) برگشت به فهرست نسخه ها
کومش Koomesh
Persian site map - English site map - Created in 0.05 seconds with 42 queries by YEKTAWEB 4645