:: جلد 24، شماره 1 - ( بهمن و اسفند 1400 ) ::
جلد 24 شماره 1 صفحات 37-26 برگشت به فهرست نسخه ها
مروری براینترفرون بتا از سلول تا استفاده درمانی در بالین
فاطمه حاجیلو ، پویا یوسفلی ، مهرنوش پاشایی ، کیمیا باقری ، بهادر باقری
چکیده:   (2050 مشاهده)
اینترفرون [Interferon (IFN)] در سال 1957 و توسط Isaac و Linddenman به عاملی که باعث ایجاد اختلال در رشد ویروس زنده آنفلوآنزا می‌شود، اطلاق شد. اینترفرون‌ها به عنوان پروتئین‌های درون سلولی در فرآیندهای مختلفی از قبیل تنظیم رشد و تکثیر سلولی، تمایز، متابولیسم ماتریکس خارج سلولی، مرگ برنامه‌ریزی شده سلول و تعدیل پاسخ‌های ایمنی نقش دارند. اینترفرون بتا (IFN-β) یکی از سایتوکاین‌های طبیعی است که توسط سیستم ایمنی بدن در پاسخ به محرک‌های بیولوژیک و شیمیایی تولید می‌شود. عملکرد آن با اتصال به گیرنده‌ی هترودیمر نوع I اینترفرون که از رشته‌های IFNAR1 و IFNAR2 تشکیل شده، انجام می‌شود که می‌تواند منجر به بیان پروتئین‌های مختلف از طریق مسیرJanus kinase/signal transducer of activator of transcription proteins (JAK/STAT) و سایر مسیرها شود. IFN-β علاوه بر اثرات ضد ویروسی، دارای اثرات درمانی در برخی بیماری‌های خودایمن مانند مالتیپل اسکلروزیس، آرتریت روماتویید و لوپوس می‌باشد. به تازگی مشخص شده است که مصرف IFN-β به همراه سایر ترکیبات ضدویروسی می‌تواند در درمان بیماری کووید 19 موثر باشد. در این مقاله‌ مروری، مواردی مانند مسیر سیگنالینگ، فعالیت بیولوژیک، کاربردهای درمانی، و عوارض IFN-β در بیماری‌های مختلف اعم از بیماری‌های خودایمن و کووید 19 مورد بررسی قرار گرفته است
واژه‌های کلیدی: اینترفرون-بتا، مسیرهای سیگنالینگ، کاربرد‌های درمانی، کووید- 19، بیماری های خودایمن
متن کامل [PDF 1182 kb]   (529 دریافت)    
نوع مطالعه: مروري | موضوع مقاله: مروري
دریافت: 1399/12/10 | پذیرش: 1400/6/7 | انتشار: 1400/10/30
فهرست منابع
1. [1] Abdolvahab MH, Mofrad M, Schellekens H. Interferon beta: from molecular level to therapeutic effects. Int Rev Cell Mol Biol 2016; 326: 343-372. [DOI:10.1016/bs.ircmb.2016.06.001] [PMID]
2. [2] De Andrea M, Ravera R, Gioia D, Gariglio M, Landolfo S. The interferon system: an overview. Eur J Paediatr Neurol 2002; 6: A41-A46. [DOI:10.1053/ejpn.2002.0573] [PMID]
3. [3] Lee A, Ashkar A. The dual nature of type I and type II interferons. Front Immunol 2018; 9: 2061. [DOI:10.3389/fimmu.2018.02061] [PMID] [PMCID]
4. [4] Hermant P, Michiels T. Interferon-λ in the context of viral infections: production, response and therapeutic implications. J Innate Immun 2014; 6: 563-574. [DOI:10.1159/000360084] [PMID] [PMCID]
5. [5] Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006; 6: 836-848. [DOI:10.1038/nri1961] [PMID]
6. [6] Filippini G, Munari L, Incorvaia B, Ebers GC, Polman C, D'Amico R, Rice GP. Interferons in relapsing remitting multiple sclerosis: a systematic review. The Lancet 2003; 361: 545-552. https://doi.org/10.1016/S0140-6736(03)13422-8 https://doi.org/10.1016/S0140-6736(03)12512-3 [DOI:10.1016/S0140-6736(03)13420-4]
7. [7] Seger RA. Modern management of chronic granulomatous disease. Br J Haematol 2008; 140: 255-266. [DOI:10.1111/j.1365-2141.2007.06880.x] [PMID]
8. [8] Bhatti Z, Berenson CS. Adult systemic cat scratch disease associated with therapy for hepatitis C. BMC Infect Dis 2007; 7: 1-4. [DOI:10.1186/1471-2334-7-8] [PMID] [PMCID]
9. [9] Uze G, Schreiber G, Piehler J, Pellegrini S. The receptor of the type I interferon family. Interferon: The 50th Anniversary: Springer; 2007; p: 71-95. [DOI:10.1007/978-3-540-71329-6_5] [PMID]
10. [10] Langer JA, Cutrone EC, Kotenko S. The Class II cytokine receptor (CRF2) family: overview and patterns of receptor-ligand interactions. Cytokine Growth Factor Rev 2004; 15: 33-48. [DOI:10.1016/j.cytogfr.2003.10.001] [PMID]
11. [11] Hebenstreit D, Horejs-Hoeck J, Duschl A. JAK/STAT-dependent gene regulation by cytokines. Drug News Perspect 2005; 18: 243-249. [DOI:10.1358/dnp.2005.18.4.908658] [PMID]
12. [12] Fleming SB. Viral inhibition of the IFN-induced JAK/STAT signalling pathway: development of live attenuated vaccines by mutation of viral-encoded IFN-antagonists. Vaccines 2016; 4: 23. [DOI:10.3390/vaccines4030023] [PMID] [PMCID]
13. [13] Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2014; 14: 36-49. [DOI:10.1038/nri3581] [PMID] [PMCID]
14. [14] Kasper LH, Reder AT. Immunomodulatory activity of interferon‐beta. Annal Clin Translat Neurol 2014; 1: 622-631. [DOI:10.1002/acn3.84] [PMID] [PMCID]
15. [15] Derkow K, Bauer JM, Hecker M, Paap BK, Thamilarasan M, Koczan D, Schott E, Deuschle K, Bellmann-Strobl J, Paul F. Multiple sclerosis: modulation of toll-like receptor (TLR) expression by interferon-β includes upregulation of TLR7 in plasmacytoid dendritic cells. PloS One 2013; 8: e70626. [DOI:10.1371/journal.pone.0070626] [PMID] [PMCID]
16. [16] Yen JH, Kong W, Ganea D. IFN-β Inhibits Dendritic Cell Migration through STAT-1-Mediated Transcriptional Suppression of CCR7 and Matrix Metalloproteinase 9. J Immunol 2010; 184: 3478-3486. [DOI:10.4049/jimmunol.0902542] [PMID] [PMCID]
17. [17] Liu Y, Marin A, Ejlerskov P, Rasmussen LM, Prinz M, Issazadeh-Navikas S. Neuronal IFN-beta-induced PI3K/Akt-FoxA1 signalling is essential for generation of FoxA1+ T reg cells. Nat Commun 2017; 8: 1-15. [DOI:10.1038/ncomms14709] [PMID] [PMCID]
18. [18] Hallal-Longo DE, Mirandola SR, Oliveira EC, Farias AS, Pereira FG, Metze IL, e al. Diminished myelin-specific T cell activation associated with increase in CTLA4 and Fas molecules in multiple sclerosis patients treated with IFN-β. J Interferon Cytokine Res 2007; 27: 865-874. [DOI:10.1089/jir.2007.0018] [PMID]
19. [19] Hojati Z, Kay M, Dehghanian F. Mechanism of action of interferon beta in treatment of multiple sclerosis. Multiple sclerosis: Elsevier; 2016. p. 365-92. [DOI:10.1016/B978-0-12-800763-1.00015-4]
20. [20] Huang H, Ito K, Dangond F, Dhib-Jalbut S. Effect of interferon beta-1a on B7. 1 and B7. 2 B-cell expression and its impact on T-cell proliferation. J Neuroimmunol 2013; 258: 27-31. [DOI:10.1016/j.jneuroim.2013.02.010] [PMID]
21. [21] Dhib-Jalbut S, Marks S. Interferon-β mechanisms of action in multiple sclerosis. Neurology 2010; 74: S17-S24. [DOI:10.1212/WNL.0b013e3181c97d99] [PMID]
22. [22] Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nat Rev Immunol 2008; 8: 559-568. [DOI:10.1038/nri2314] [PMID] [PMCID]
23. [23] González-Navajas JM, Lee J, David M, Raz E. Immunomodulatory functions of type I interferons. Nat Rev Immunol 2012; 12: 125-135. [DOI:10.1038/nri3133] [PMID] [PMCID]
24. [24] Reang P, Gupta M, Kohli K. Biological response modifiers in cancer. MedGenMed 2006; 8: 33.
25. [25] Kuo PC, Scofield BA, Yu IC, Chang FL, Ganea D, Yen JH. Interferon‐β modulates inflammatory response in cerebral ischemia. J Am Heart Assoc 2016; 5: e002610. [DOI:10.1161/JAHA.115.002610] [PMID] [PMCID]
26. [26] Cudrici C, Niculescu T, Niculescu F, Shin ML, Rus H. Oligodendrocyte cell death in pathogenesis of multiple sclerosis: Protection of oligodendrocytes from apoptosis by complement. J Rehab Res Dev 2006; 43. [DOI:10.1682/JRRD.2004.08.0111] [PMID]
27. [27] Loma I, Heyman R. Multiple sclerosis: pathogenesis and treatment. Current Neuropharmacol 2011; 9: 409-416. [DOI:10.2174/157015911796557911] [PMID] [PMCID]
28. [28] Shrivastav M, Niewold TB. Nucleic acid sensors and type I interferon production in systemic lupus erythematosus. Front Immunol 2013; 4: 319. [DOI:10.3389/fimmu.2013.00319] [PMID] [PMCID]
29. [29] Theofilopoulos AN. TLRs and IFNs: critical pieces of the autoimmunity puzzle. J Clin Invest 2012; 122: 3464-3466. [DOI:10.1172/JCI63835] [PMID] [PMCID]
30. [30] Schwarting A, Paul K, Tschirner S, Menke J, Hansen T, Brenner W, Kelley VR, Relle M, Galle PR. Interferon-β: a therapeutic for autoimmune lupus in MRL-Faslpr mice. J Am Soc Nephrol 2005; 16: 3264-3272. [DOI:10.1681/ASN.2004111014] [PMID]
31. [31] Hamilton JA, Wu Q, Yang P, Luo B, Liu S, Li J, Mattheyses AL, Sanz I, Chatham WW, Hsu HC. Cutting edge: intracellular IFN-β and distinct type I IFN expression patterns in circulating systemic lupus erythematosus B cells. J Immunol 2018; 201: 2203-2208. [DOI:10.4049/jimmunol.1800791] [PMID] [PMCID]
32. [32] Karonitsch T, Dalwigk K, Byrne R, Niedereiter B, Cetin E, Wanivenhaus A, Scheinecker C, Smolen J, Kiener H. IFN-gamma promotes fibroblast-like synoviocytes motility. Annals of the Rheumatic Diseases 2010; 69: A63-A. [DOI:10.1136/ard.2010.129650k]
33. [33] Page CE, Smale S, Carty SM, Amos N, Lauder SN, Goodfellow RM, et al. Interferon-γ inhibits interleukin-1β-induced matrix metalloproteinase production by synovial fibroblasts and protects articular cartilage in early arthritis. Arthritis Res Ther 2010; 12: 1-10. [DOI:10.1186/ar2960] [PMID] [PMCID]
34. [34] Vervoordeldonk MJ, Aalbers CJ, Tak PP. Interferon β for rheumatoid arthritis: new clothes for an old kid on the block. Ann Rheum Dis 2009; 68: 157-158. [DOI:10.1136/ard.2008.097899] [PMID]
35. [35] Smeets TJ, Dayer JM, Kraan MC, Versendaal J, Chicheportiche R, Breedveld FC, Tak PP. The effects of interferon‐β treatment on synovial inflammation and expression of metalloproteinases in patients with rheumatoid arthritis. Arthritis Rheum 2000; 43: 270-274. https://doi.org/10.1002/1529-0131(200002)43:2<270::AID-ANR5>3.0.CO;2-H [DOI:10.1002/1529-0131(200002)43:23.0.CO;2-H]
36. [36] Genovese MC, Chakravarty EF, Krishnan E, Moreland LW. A randomized, controlled trial of interferon-β-1a (Avonex®) in patients with rheumatoid arthritis: a pilot study [ISRCTN03626626]. Arthritis Res Ther 2003; 6: 1-5.
37. [37] Heidari N, Abbasi H, Namaki S, Hashemi SM. Application of extracellular vesicles in the treatment of inflammatory bowel disease. Koomesh 2020; 22: 209-219. [DOI:10.29252/koomesh.22.2.209]
38. [38] Burger D, Travis S. Conventional medical management of inflammatory bowel disease. Gastroenterology 2011; 140: 1827-1837. e2. [DOI:10.1053/j.gastro.2011.02.045] [PMID]
39. [39] Nikolaus S, Rutgeerts P, Fedorak R, Steinhart A, Wild G, Theuer D, Möhrle J, Schreiber S. Interferon β-1a in ulcerative colitis: a placebo controlled, randomised, dose escalating study. Gut 2003; 52: 1286-1290. [DOI:10.1136/gut.52.9.1286] [PMID] [PMCID]
40. [40] Madsen S, Schlichting P, Davidsen B, Nielsen O, Federspiel B, Riis P, Munkholm P. An open-labeled, randomized study comparing systemic interferon-α-2A and prednisolone enemas in the treatment of left-sided ulcerative colitis. The Am J Gastroenterol 2001; 96: 1807-1815. https://doi.org/10.1016/S0002-9270(01)02438-8 [DOI:10.1111/j.1572-0241.2001.03875.x]
41. [41] Rossi CP, Hanauer SB, Tomasevic R, Hunter JO, Shafran I, Graffner H. Interferon beta-1a for the maintenance of remission in patients with Crohn's disease: results of a phase II dose-finding study. BMC Gastroenterol 2009; 9: 1-10. [DOI:10.1186/1471-230X-9-22] [PMID] [PMCID]
42. [42] McFarland AP, Savan R, Wagage S, Addison A, Ramakrishnan K, Karwan M, et al. Localized delivery of interferon-β by Lactobacillus exacerbates experimental colitis. PloS One 2011; 6: e16967. [DOI:10.1371/journal.pone.0016967] [PMID] [PMCID]
43. [43] Mitoro A, Yoshikawa M, Yamamoto K, Mimura M, Yoshikawa Y, Shiroi A, et al. Exacerbation of ulcerative colitis during alpha-interferon therapy for chronic hepatitis C. Intern Med 1993; 32: 327-331. [DOI:10.2169/internalmedicine.32.327] [PMID]
44. [44] Schott E, Paul F, Wuerfel JT, Zipp F, Rudolph B, Wiedenmann B, Baumgart DC. Development of ulcerative colitis in a patient with multiple sclerosis following treatment with interferonβ 1a. World J Gastroenterol 2007; 13: 3638-3640. [DOI:10.3748/wjg.v13.i26.3638] [PMID] [PMCID]
45. [45] Spiegel M, Pichlmair A, Mühlberger E, Haller O, Weber F. The antiviral effect of interferon-beta against SARS-coronavirus is not mediated by MxA protein. J Clin Virol 2004; 30: 211-213. [DOI:10.1016/j.jcv.2003.11.013] [PMID] [PMCID]
46. [46] Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H. Treatment of SARS with human interferons. The Lancet 2003; 362: 293-294. https://doi.org/10.1016/S0140-6736(03)13973-6 [DOI:10.1016/S0140-6736(03)14483-2]
47. [47] Payandemehr P, Azhdarzadeh M, Bahrami-Motlagh H, Hadadi A, Najmeddin F, Shahmirzaei S, et al. Interferon beta-1a as a Candidate for COVID-19 treatment; an open-label single-arm clinical trial. Adv J Emerg Med 2020; 4: e51.
48. [48] Davoudi-Monfared E, Rahmani H, Khalili H, Hajiabdolbaghi M, Salehi M, Abbasian L, et al. A randomized clinical trial of the efficacy and safety of interferon β-1a in treatment of severe COVID-19. Antimicrob Agents Chemother 2020; 64: e01061-20. [DOI:10.1128/AAC.01061-20] [PMID] [PMCID]
49. [49] Hung IF, Lung KC, Tso EY, Liu R, Chung TW, Chu MY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. The Lancet 2020; 395: 1695-1704. [DOI:10.1016/S0140-6736(20)31042-4]
50. [50] Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11: 1-14. [DOI:10.1038/s41467-019-13940-6] [PMID] [PMCID]
51. [51] Dastan F, Nadji SA, Saffaei A, Marjani M, Moniri A, Jamaati H, et al. Subcutaneous administration of interferon beta-1a for COVID-19: A non-controlled prospective trial. Int Immunopharmacol 2020; 85: 106688. [DOI:10.1016/j.intimp.2020.106688] [PMID] [PMCID]
52. [52] Khamis F, Al Naabi H, Al Lawati A, Ambusaidi Z, Al Sharji M, Al Barwani U, et al. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. Int J Infect Dis 2021; 102: 538-543. [DOI:10.1016/j.ijid.2020.11.008] [PMID] [PMCID]
53. [53] Monk PD, Marsden RJ, Tear VJ, Brookes J, Batten TN, Mankowski M, et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir Med 2021; 9: 196-206. [DOI:10.1016/S2213-2600(20)30511-7]
54. [54] Dorgham K, Neumann AU, Decavele M, Luyt CE, Yssel H, Gorochov G. Considering personalized interferon beta therapy for COVID-19. Antimicrob Agents Chemother 2021; 65: e00065-21. [DOI:10.1128/AAC.00065-21] [PMID] [PMCID]
55. [55] Chiang J, Gloff CA, Yoshizawa CN, Williams GJ. Pharmacokinetics of recombinant human interferon-β ser in healthy volunteers and its effect on serum neopterin. Pharm Res 1993; 10: 567-572. [DOI:10.1023/A:1018902120023] [PMID]
56. [56] Panitch H, Goodin D, Francis G, Chang P, Coyle P, O'Connor P, et al. Benefits of high-dose, high-frequency interferon beta-1a in relapsing-remitting multiple sclerosis are sustained to 16 months: Final comparative results of the EVIDENCE trial. J Neurol Sci 2005; 239: 67-74. [DOI:10.1016/j.jns.2005.08.003] [PMID]
57. [57] Beheshti A, Birjandi B, Khosravi A, Ghafarzadegan K. Autoimmune hepatitis induced by interferon beta therapy in a patient with multiple sclerosis. Med J Mashhad Univ Med Sci 2015; 58: 225-229. (Persian).
58. [58] Rommer P, Zettl U, Kieseier B, Hartung HP, Menge T, Frohman E, et al. Requirement for safety monitoring for approved multiple sclerosis therapies: an overview. Clin Exp Immunol 2014; 175: 397-407. [DOI:10.1111/cei.12206] [PMID] [PMCID]
59. [59] Ricchi P, Ammirabile M, Costantini S, Cinque P, Lanza AG, Spasiano A, et al. The impact of previous or concomitant IFN therapy on deferiprone-induced agranulocytosis and neutropenia: a retrospective study. Expert Opin Drug Saf 2010; 9: 875-881. [DOI:10.1517/14740338.2010.510831] [PMID]
60. [60] Nokta M, Loh J, Douidar SM, Ahmed AE, Pollard RB. Metabolic interaction of recombinant interferon-β and zidovudine in AIDS patients. J Interferon Res 1991; 11: 159-164. [DOI:10.1089/jir.1991.11.159] [PMID]
61. [61] Stewart N, Simpson S, van der Mei I, Ponsonby AL, Blizzard L, Dwyer T, et al. Interferon-β and serum 25-hydroxyvitamin D interact to modulate relapse risk in MS. Neurology 2012; 79: 254-260. [DOI:10.1212/WNL.0b013e31825fded9] [PMID]
62. [62] Corominas M, Gastaminza G, Lobera T. Hypersensitivity reactions to biological drugs. J Investig Allergol Clin Immunol 2014; 24: 212-225.
63. [63] Lublin F, Whitaker J, Eidelman B, Miller A, Arnason B, Burks J. Management of patients receiving interferon beta-1b for multiple sclerosis: report of a consensus conference. Neurology 1996; 46: 12-18. [DOI:10.1212/WNL.46.1.12] [PMID]


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
جلد 24، شماره 1 - ( بهمن و اسفند 1400 ) برگشت به فهرست نسخه ها