:: جلد 23، شماره 6 - ( آذر و دی 1400 ) ::
جلد 23 شماره 6 صفحات 682-673 برگشت به فهرست نسخه ها
اهمیت اگزوزوم‌ها در پاتوژنز و درمان COVID-19
پرویز بصیری ، محمد حسن سهیلی فر ، سیما نوبری ، امیر حسن نیکفرجام ، هدی کشمیری نقاب ، سعید افشار ، شیما قربانی فر ، علی مهدوی نژاد
چکیده:   (1984 مشاهده)
اگزوزوم‌ها حامل‌هایی با دو لایه چربی هستند که مولکول‌های زیستی مختلفی از جمله پروتئین، لیپید و miRNAها را حمل می‌کنند. اگزوزوم‌های در برگیرنده‌ی SARS-CoV-2 می‌توانند به سلول‌های حساس میزبان وارد شده و اجزای ویروسی را منتقل کنند که با انتقال بین سلولی ویروس و انتشار عفونت مرتبط‌اند. تحریک بیش از حد سیستم ایمنی بدن به دنبال تولید بیش از حد سایتوکاین‌های پیش‌التهابی، مشخصه‌ی COVID-19 است. به علاوه، اگزوزوم‌های مشتق از سلول‌های بنیادی مزانشیمی به دلیل توانایی در کاهش طوفان سایتوکاین، بهبود ترمیم بافت، و جلوگیری از نارسایی اعضای مختلف بدن، یک گزینه‌ی درمانی بالقوه در COVID-19 می‌باشند. مطالعه‌ی حاضر‌ به بررسی اهمیت اگزوزوم‌ها در COVID-19 می‌پردازد.
واژه‌های کلیدی: SARS-CoV-2، اگزوزوم، COVID-19، درمان
متن کامل [PDF 1006 kb]   (665 دریافت)    
نوع مطالعه: مروري | موضوع مقاله: مروري
دریافت: 1399/10/17 | پذیرش: 1400/2/28 | انتشار: 1400/9/7
فهرست منابع
1. [1] Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2020; 19: 141-154. [DOI:10.1038/s41579-020-00459-7] [PMID] [PMCID]
2. [2] Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England) 2020; 395: 1033. [DOI:10.1016/S0140-6736(20)30628-0]
3. [3] Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. Jama 2020; 323: 1239-1242. [DOI:10.1001/jama.2020.2648] [PMID]
4. [4] Li N, Wang X, Lv T. Prolonged SARS‐CoV‐2 RNA shedding: Not a rare phenomenon. J Medical Virol 2020. [DOI:10.1002/jmv.25952] [PMID] [PMCID]
5. [5] Xiao AT, Tong YM, Zhang S. False‐negative of RT‐PCR and prolonged nucleic acid conversion in COVID‐19: rather than recurrence. J Med Virol 2020. [DOI:10.1002/jmv.25855] [PMID] [PMCID]
6. [6] Badierah RA, Uversky VN, Redwan EM. Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. J Biomol Struct Dyn 2020; 1-27. [DOI:10.1080/07391102.2020.1756409] [PMID]
7. [7] Pocsfalvi G, Mammadova R, Juarez AP, Bokka R, Trepiccione F, Capasso G. COVID-19 and Extracellular Vesicles: An Intriguing Interplay. Kidney Blood Press Res 2020; 45: 661-670. [DOI:10.1159/000511402] [PMID] [PMCID]
8. [8] Zhang B, Yeo RW, Lai RC, Sim EW, Chin KC, Lim SK. Mesenchymal stromal cell exosome-enhanced regulatory T-cell production through an antigen-presenting cell-mediated pathway. Cytotherapy 2018; 20: 687-696. [DOI:10.1016/j.jcyt.2018.02.372] [PMID]
9. [9] Statello L, Maugeri M, Garre E, Nawaz M, Wahlgren J, Papadimitriou A, et al. Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PloS One 2018; 13: e0195969. [DOI:10.1371/journal.pone.0195969] [PMID] [PMCID]
10. [10] Giannessi F, Aiello A, Franchi F, Percario ZA, Affabris E. The role of extracellular vesicles as allies of HIV, HCV and SARS viruses. Viruses 2020; 12: 571. [DOI:10.3390/v12050571] [PMID] [PMCID]
11. [11] Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). Stat Pearls 2020.
12. [12] Jabbari N, Karimipour M, Khaksar M, Akbariazar E, Heidarzadeh M, Mojarad B, et al. Tumor-derived extracellular vesicles: insights into bystander effects of exosomes after irradiation. Lasers Med Sci 2020; 35: 531-545. [DOI:10.1007/s10103-019-02880-8] [PMID]
13. [13] Blanchard E, Roingeard P. Virus‐induced double‐membrane vesicles. Cell Microbiol 2015; 17: 45-50. [DOI:10.1111/cmi.12372] [PMID] [PMCID]
14. [14] Li CC, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT, et al. Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol 2013; 10: 1333-1344. [DOI:10.4161/rna.25281] [PMID] [PMCID]
15. [15] Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R. et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 2015; 32: 2003-2014. [DOI:10.1007/s11095-014-1593-y] [PMID] [PMCID]
16. [16] Andaloussi SE, Lakhal S, Mäger I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 2013; 65: 391-397. [DOI:10.1016/j.addr.2012.08.008] [PMID]
17. [17] Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int 2018; 2018. [DOI:10.1155/2018/3057624] [PMID] [PMCID]
18. [18] Kuate S, Cinatl J, Doerr HW, Überla K. Exosomal vaccines containing the S protein of the SARS coronavirus induce high levels of neutralizing antibodies. Virology 2007; 362: 26-37. [DOI:10.1016/j.virol.2006.12.011] [PMID] [PMCID]
19. [19] Huang-Doran I, Zhang CY, Vidal-Puig A. Vidal-Puig, Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab 2017; 28: 3-18. [DOI:10.1016/j.tem.2016.10.003] [PMID]
20. [20] Liu C, Su C. Design strategies and application progress of therapeutic exosomes. Theranostics 2019; 9: 1015-1028. [DOI:10.7150/thno.30853] [PMID] [PMCID]
21. [21] Mack M, Kleinschmidt A, Brühl H, Klier C, Nelson PJ, Cihak J, et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med 2000; 6: 769-775. [DOI:10.1038/77498] [PMID]
22. [22] Meckes DG. Exosomal communication goes viral. J Virol 2015; 89: 5200-5203. [DOI:10.1128/JVI.02470-14] [PMID] [PMCID]
23. [23] Knoops K, Bárcena M, Limpens RW, Koster AJ, Mommaas AM, Snijder EJ. Ultrastructural characterization of arterivirus replication structures: reshaping the endoplasmic reticulum to accommodate viral RNA synthesis. J Virol 2012; 86: 2474-2487. [DOI:10.1128/JVI.06677-11] [PMID] [PMCID]
24. [24] Snijder EJ, Van Der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, Van Der Meulen J, Koerten HK, Mommaas AM. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 2006; 80: 5927-5940. [DOI:10.1128/JVI.02501-05] [PMID] [PMCID]
25. [25] Zeng Z, Xu L, Xie XY, Yan HL, Xie BJ, Xu WZ, et al. Pulmonary pathology of early‐phase COVID‐19 pneumonia in a patient with a benign lung lesion. Histopathology 2020; 77: 823-831. [DOI:10.1111/his.14138] [PMID] [PMCID]
26. [26] Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis 2020; 20: 1135-1140. [DOI:10.1016/S1473-3099(20)30434-5]
27. [27] Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 2015; 16: 24-43. [DOI:10.15252/embr.201439363] [PMID] [PMCID]
28. [28] Moriel‐Carretero M. The hypothetical role of Phosphatidic Acid in subverting ER membranes during SARS‐CoV infection. Traffic 2020; 21: 545-551. [DOI:10.1111/tra.12738] [PMID] [PMCID]
29. [29] Elrashdy F, Aljaddawi AA, Redwan EM, Uversky VN. On the potential role of exosomes in the COVID-19 reinfection/reactivation opportunity. J Biomol Struct Dyn 2020; 1-12. [DOI:10.1080/07391102.2020.1790426] [PMID] [PMCID]
30. [30] Oudshoorn D, Rijs K, Limpens RW, Groen K, Koster AJ, Snijder EJ, et al. Expression and cleavage of middle east respiratory syndrome coronavirus nsp3-4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication. mBio 2017; 8: e01658-01717. [DOI:10.1128/mBio.01658-17] [PMID] [PMCID]
31. [31] Owczarek K, Szczepanski A, Milewska A, Baster Z, Rajfur Z, Sarna M, Pyrc K. Early events during human coronavirus OC43 entry to the cell. Sci Rep 2018; 8: 1-12. [DOI:10.1038/s41598-018-25640-0] [PMID] [PMCID]
32. [32] Farkash EA, Wilson AM, Jentzen JM. Ultrastructural evidence for direct renal infection with SARS-CoV-2. J Am Soc Nephrol 2020; 31: 1683-1687. [DOI:10.1681/ASN.2020040432] [PMID] [PMCID]
33. [33] Mönkemüller K, Fry L, Rickes S. COVID-19, coronavirus, SARS-CoV-2 and the small bowel. Rev Esp Enferm Dig 2020; 112: 383-388. [DOI:10.17235/reed.2020.7137/2020] [PMID]
34. [34] Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet 2020; 395: 1417-1418. [DOI:10.1016/S0140-6736(20)30937-5]
35. [35] Kwon Y, Nukala SB, Srivastava S, Miyamoto H, Ismail NI, Ong SB, et al. Exosomes facilitate transmission of SARS-CoV-2 Genome into human induced pluripotent stem cell-derived cardiomyocytes. BioRxiv 2020.
36. [36] Su H, Yang M, Wan C, Yi LX, Tang F, Zhu HY, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int 2020; 98: 219-227. [DOI:10.1016/j.kint.2020.04.003] [PMID] [PMCID]
37. [37] Leung WK, To KF, Chan PK, Chan HL, Wu AK, Lee N, et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 2003; 125: 1011-1017. https://doi.org/10.1016/S0016-5085(03)01215-0 [DOI:10.1016/j.gastro.2003.08.001]
38. [38] Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020. [DOI:10.1056/NEJMoa2001017] [PMID] [PMCID]
39. [39] West NR. Coordination of immune-stroma crosstalk by IL-6 family cytokines. Front Immunol 2019; 10: 1093-1093. [DOI:10.3389/fimmu.2019.01093] [PMID] [PMCID]
40. [40] Lee JS, Park S, Jeong HW, Ahn JY, Choi SJ, Lee H, et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci Immunol 2020; 5. [DOI:10.1126/sciimmunol.abd1554] [PMID] [PMCID]
41. [41] Arunachalam PS, Wimmers F, Mok CK, Perera RA, Scott M, Hagan T, et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 2020; 369: 1210-1220. [DOI:10.1126/science.abc6261] [PMID] [PMCID]
42. [42] Oczypok EA, Perkins TN, Oury TD. All the "RAGE" in lung disease: The receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev 2017; 23: 40-49. [DOI:10.1016/j.prrv.2017.03.012] [PMID] [PMCID]
43. [43] Li CJ, Liu Y, Chen Y, Yu D, Williams KJ, Liu ML. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke. Am J Pathol 2013; 182: 1552-1562. [DOI:10.1016/j.ajpath.2013.01.035] [PMID] [PMCID]
44. [44] Sharma H, Chinnappan M, Agarwal S, Dalvi P, Gunewardena S, O'Brien-Ladner A, Dhillon NK. Macrophage‐derived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse. FASEB J 2018; 32: 5174-5185. [DOI:10.1096/fj.201701558R] [PMID] [PMCID]
45. [45] Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol 2020; 7: e438. [DOI:10.1016/S2352-3026(20)30145-9]
46. [46] Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res 2020; 190: 62. [DOI:10.1016/j.thromres.2020.04.014] [PMID] [PMCID]
47. [47] Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID‐19. J Thromb Haemost 2020; 18: 2103-2109. [DOI:10.1111/jth.14975] [PMID] [PMCID]
48. [48] Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, Masoumi A, et al. COVID-19 and cardiovascular disease. Circulation 2020; 141: 1648-1655. [DOI:10.1161/CIRCULATIONAHA.120.046941] [PMID]
49. [49] Kissling S, Rotman S, Gerber C, Halfon M, Lamoth F, Comte D, et al. Collapsing glomerulopathy in a COVID-19 patient. Kidney Int 2020; 98: 228-231. [DOI:10.1016/j.kint.2020.04.006] [PMID] [PMCID]
50. [50] Hassanpour M, Rezaie J, Nouri M, Panahi Y. The role of extracellular vesicles in COVID-19 virus infection. Infect Genet Evol 2020; 104422. [DOI:10.1016/j.meegid.2020.104422] [PMID] [PMCID]
51. [51] Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv 2020. [DOI:10.1101/2020.01.31.929042]
52. [52] Earnest JT, Hantak MP, Li K, McCray Jr PB, Perlman S, Gallagher T. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathog 2017; 13: e1006546. [DOI:10.1371/journal.ppat.1006546] [PMID] [PMCID]
53. [53] Gunasekaran M, Bansal S, Ravichandran R, Sharma M, Perincheri S, Rodriguez F, et al. Respiratory viral infection in lung transplantation induces exosomes that trigger chronic rejection. J Heart Lung Transplant 2020; 39: 379-388. [DOI:10.1016/j.healun.2019.12.009] [PMID] [PMCID]
54. [54] Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect 2020; 10. [DOI:10.1016/j.jmii.2020.03.022] [PMID] [PMCID]
55. [55] Badierah RA, Uversky VN, Redwan EM. Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. J Biomol Struct Dyn 2021; 39: 3034-3060. [DOI:10.1080/07391102.2020.1756409] [PMID]
56. [56] Wiley RD, Gummuluru S. Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 2006; 103: 738-743. [DOI:10.1073/pnas.0507995103] [PMID] [PMCID]
57. [57] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367. [DOI:10.1126/science.aau6977] [PMID] [PMCID]
58. [58] Yuan J, Kou S, Liang Y, Zeng J, Pan Y, Liu L. PCR assays turned positive in 25 discharged COVID-19 patients. Clin Infect Dis 2020.
59. [59] Elrashdy F, Aljaddawi AA, Redwan EM, Uversky VN. On the potential role of exosomes in the COVID-19 reinfection/reactivation opportunity. J Biomol Struct Dyn 2021; 39: 5831-5842. [DOI:10.1080/07391102.2020.1790426] [PMID] [PMCID]
60. [60] Ye G, Pan Z, Pan Y, Deng Q, Chen L, Li J, et al. Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation. J Infect 2020; 80: e14-e17. [DOI:10.1016/j.jinf.2020.03.001] [PMID] [PMCID]
61. [61] Naqvi AR, Shango J, Seal A, Shukla D, Nares S. Viral miRNAs alter host cell miRNA profiles and modulate innate immune responses. Front Immunol 2018; 9: 433. [DOI:10.3389/fimmu.2018.00433] [PMID] [PMCID]
62. [62] Guterres A, de Azeredo Lima CH, Miranda RL, Gadelha MR. What is the potential function of microRNAs as biomarkers and therapeutic targets in COVID-19? Infect Genet Evol 2020; 85: 104417. [DOI:10.1016/j.meegid.2020.104417] [PMID] [PMCID]
63. [63] Chahar HS, Bao X, Casola A. Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses 2015; 7: 3204-3225. [DOI:10.3390/v7062770] [PMID] [PMCID]
64. [64] Nahand JS, Mahjoubin-Tehran M, Moghoofei M, Pourhanifeh MH, Mirzaei HR, Asemi Z, et al. Exosomal miRNAs: Novel players in viral infection. Epigenomics 2020; 12: 353-370. [DOI:10.2217/epi-2019-0192] [PMID] [PMCID]
65. [65] Meckes DG Jr, Shair KH, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N. Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A 2010; 107: 20370-20375. [DOI:10.1073/pnas.1014194107] [PMID] [PMCID]
66. [66] Chahar HS, Corsello T, Kudlicki AS, Komaravelli N, Casola A. Respiratory syncytial virus infection changes cargo composition of exosome released from airway epithelial cells. Sci Rep 2018; 8: 1-18. [DOI:10.1038/s41598-017-18672-5] [PMID] [PMCID]
67. [67] Soheilifar MH, Keshmiri Neghab H, Basiri P. Biological impacts of MicroRNAs in Covid-19: implications for anti-viral miRNA-Based therapies. Arch Clin Infect Dis 2020; 15: e104140. [DOI:10.5812/archcid.104140]
68. [68] Widiasta A, Sribudiani Y, Nugrahapraja H, Hilmanto D, Sekarwana N, Rachmadi D. Potential role of ACE2-related microRNAs in COVID-19-associated nephropathy. Noncoding RNA Res 2020; 5: 153-166. [DOI:10.1016/j.ncrna.2020.09.001] [PMID] [PMCID]
69. [69] Li Y, Yin Z, Fan J, Zhang S, Yang W. The roles of exosomal miRNAs and lncRNAs in lung diseases. Signal Transduct Target Ther 2019; 4: 1-12. [DOI:10.1038/s41392-019-0080-7] [PMID] [PMCID]
70. [70] Qian X, Xu C, Fang S, Zhao P, Wang Y, Liu H, et al. Exosomal microRNAs derived from umbilical mesenchymal stem cells inhibit hepatitis C virus infection. Stem Cells Transl Med 2016; 5: 1190-1203. [DOI:10.5966/sctm.2015-0348] [PMID] [PMCID]
71. [71] Khatri M, Richardson LA, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res Ther 2018; 9: 1-13. [DOI:10.1186/s13287-018-0774-8] [PMID] [PMCID]
72. [72] Tsuchiya A, Takeuchi S, Iwasawa T, Kumagai M, Sato T, Motegi S, et al. Therapeutic potential of mesenchymal stem cells and their exosomes in severe novel coronavirus disease 2019 (COVID-19) cases. Inflamm Regen 2020; 40: 1-6. [DOI:10.1186/s41232-020-00121-y] [PMID] [PMCID]
73. [73] Börger V, Weiss DJ, Anderson JD, Borràs FE, Bussolati B, Carter DR, et al. International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19. Cytotherapy 2020; 22: 482-485. [DOI:10.1016/j.jcyt.2020.05.002] [PMID] [PMCID]
74. [74] Soni S, Wilson MR, O'Dea KP, Yoshida M, Katbeh U, Woods SJ, Takata M. Alveolar macrophage-derived microvesicles mediate acute lung injury. Thorax 2016; 71: 1020-1029. [DOI:10.1136/thoraxjnl-2015-208032] [PMID] [PMCID]
75. [75] Jones LB, Bell CR, Bibb KE, Gu L, Coats MT, Matthews QL. Pathogens and their effect on exosome biogenesis and composition. Biomedicines 2018; 6: 79. [DOI:10.3390/biomedicines6030079] [PMID] [PMCID]
76. [76] Shenoda BB, Ajit SK. Modulation of immune responses by exosomes derived from antigen-presenting cells. Clin Med Insights Pathol 2016; 9: S39925. [DOI:10.4137/CPath.S39925] [PMID] [PMCID]
77. [77] Qazi KR, Gehrmann U, Domange Jordö E, Karlsson MC, Gabrielsson S. Antigen-loaded exosomes alone induce Th1-type memory through a B cell-dependent mechanism. Blood 2009; 113: 2673-2683. [DOI:10.1182/blood-2008-04-153536] [PMID]
78. [78] Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev 2020; 29: 747-754. https://doi.org/10.1089/scd.2020.0080 [DOI:10.1089/scd.2020.0095] [PMID] [PMCID]
79. [79] Alzahrani FA, Saadeldin IM, Ahmad A, Kumar D, Azhar EI, Siddiqui AJ, et al. The potential use of mesenchymal stem cells and their derived exosomes as immunomodulatory agents for COVID-19 patients. Stem Cells Int 2020; 2020. [DOI:10.1155/2020/8835986] [PMID] [PMCID]
80. [80] Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells 2020; 12: 814. [DOI:10.4252/wjsc.v12.i8.814] [PMID] [PMCID]
81. [81] Cruz FF, Rocco PR. Stem-cell extracellular vesicles and lung repair. Stem Cell Investig 2017; 4. [DOI:10.21037/sci.2017.09.02] [PMID] [PMCID]
82. [82] Pocsfalvi G, Mammadova R, Juarez AP, Bokka R, Trepiccione F, Capasso G. COVID-19 and Extracellular Vesicles: An Intriguing Interplay. Kidney Blood Press Res 2020; 1-10. [DOI:10.1159/000511402] [PMID] [PMCID]
83. [83] Yahaya BH. ID2008 Aerosol-based cell delivery as an innovative treatment for lung diseases. Biomed Res Ther 2017; 4: S41-S41. [DOI:10.15419/bmrat.v4iS.251]
84. [84] Cho BS, Kim JO, Ha DH, Yi YW. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther 2018; 9: 187. [DOI:10.1186/s13287-018-0939-5] [PMID] [PMCID]
85. [85] Choudhery MS, Harris DT. Stem cell therapy for COVID‐19: Possibilities and challenges. Cell Biol Int 2020; 44: 2182-2191. [DOI:10.1002/cbin.11440] [PMID] [PMCID]
86. [86] Li Y, Xu J, Shi W, Chen C, Shao Y, Zhu L, et al. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice. Stem Cell Res Ther 2016; 7: 159. [DOI:10.1186/s13287-016-0395-z] [PMID] [PMCID]
87. [87] Du YM, Zhuansun YX, Chen R, Lin L, Lin Y, Li JG. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res 2018; 363: 114-120. [DOI:10.1016/j.yexcr.2017.12.021] [PMID]
88. [88] Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 2017; 27: 172-188. [DOI:10.1016/j.tcb.2016.11.003] [PMID] [PMCID]
89. [89] Zheng G, Huang L, Tong H, Shu Q, Hu Y, Ge M. et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res 2014; 15: 39. [DOI:10.1186/1465-9921-15-39] [PMID] [PMCID]
90. [90] Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev 2020; 53: 66-70. [DOI:10.1016/j.cytogfr.2020.05.002] [PMID] [PMCID]
91. [91] Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11: 216. [DOI:10.14336/AD.2020.0228] [PMID] [PMCID]
92. [92] Yin G, Zhang C, Jin H. Current status on clinical trials and treatments for COVID-19.


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
جلد 23، شماره 6 - ( آذر و دی 1400 ) برگشت به فهرست نسخه ها