اکثر مکاتبات کومش از طریق ایمیل سایت می باشد. لطفا Spam ایمیل خود را نیز چک نمایید.
   [صفحه اصلی ]   [Archive] [ English ]  
:: ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
کار آزمایی بالینی::
تماس با ما::
تسهیلات پایگاه::
::
هزینه چاپ مقاله در کومش
با توجه به تصمیمات گرفته شده جهت پذیرش مقالات در مجله کومش از نویسندگان مقاله هزینه دریافت می گردد. هزینه پذیرش مقالات از ابتدای سال 1402 در مجله کومش  مبلغ 12.000.000ریال (یک میلیون و دویست هزار تومان) می باشد. که نویسنده مسئول می بایست جهت دریافت نامه پذیرش به حساب درآمد های دانشگاه واریز نمایند تا گواهی پذیرش مقاله صادر و مراحل بعدی انتشار مقاله انجام شود.
تبصره: این مصوبه شامل مقالاتی که نویسنده مسئول مقاله از همکاران دانشگاه علوم پزشکی سمنان باشد نمی شود.
..
لیست داوران پیشنهادی
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Citations87484258
h-index3821
i10-index272121

..
:: جلد 22، شماره 4 - ( پائیز 1399 ) ::
جلد 22 شماره 4 صفحات 677-671 برگشت به فهرست نسخه ها
کاربرد طیف نگاری تشدید مغناطیسی در بررسی تغییرات متابولیک قشر سینگولیت قدامی در بیماری آلزایمر
عرفان ساعت چیان ، سینا احسانی ، علیرضا منتظرابدی
چکیده:   (2523 مشاهده)
هدف: بیماری آلزایمر (Alzheimer's disease, AD) شایع‌ترین علت دمانس در سرتاسر جهان است. اختلال شناختی خفیف اغلب مرحله‌ی مقدماتی بیماری آلزایمر است. بیش‌تر بیماران دچار اختلال شناختی خفیف مستعد تغییرات پاتولوژیک جهت ایجاد بیماری آلزایمر هستند و با نرخ سالانه 15 درصد افراد درگیر این بیماری دچار بیماری آلزایمر می‌شوند. شواهد فزاینده نشان می‌دهد که تغییرات غیرمتقارنی در سمت راست و چپ مغز در مراحل ابتدایی بیماری آلزایمر اتفاق می‌افتد. با این‌حال، ویژگی‌های تغییرات غیرمتقارن در قشر سینگولیت قدامی (Anteroir Cingulate cortex, ACC) هنوز روشن نیست. از این رو در این مطالعه تغییرات غیرمتقارن چپ-راست متابولیت‌ها در قشر سینگولیت قدامی بررسی شد. مواد و روش‌ها: بر روی 14 مورد بیمار دچار آلزایمر خفیف که معیارهای بیماری آلزایمر NINDS-ADRDA را برآورده می‌کردند، 12 مورد اختلال شناختی خفیف مطابق با معیارهای کلینیک مرکز پژوهش بیماری آلزایمر مایو و 15 مورد کنترل (NC)، طیف نگاری تشدید مغناطیسی پروتون (1H-MRS)، به منظور اندازه‌گیری نسبت‌های NAA/mI، NAA/Cr، Cho/Cr و mI/Cr در ACC به‌صورت دو طرفه انجام گرفت. اطلاعات طیف‌نگاری تشدید مغناطیسی را توسط تی-تست جفت شده آنالیز شد تا عدم تقارن اطلاعات متابولیک ACC سمت چپ و راست را تایید شود. یافته‌ها: در آلزایمر، تفاوت معنی‌داری در نسبت mI/Cr بین ACC راست و چپ وجود داشت (001/0P
واژه‌های کلیدی: طیف نگاری تشدید مغناطیسی، بیماری آلزایمر، اختلال شناختی
متن کامل [PDF 713 kb]   (663 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى
دریافت: 1398/11/7 | پذیرش: 1399/2/28 | انتشار: 1399/7/9
فهرست منابع
1. [1] Alzheimer's Association. Alzheimer's disease facts and figures. Alzheimer's Dement 2015; 11: 332-384. [DOI:10.1016/j.jalz.2015.02.003] [PMID]
2. [2] Yan Y, Yang H, Xie Y, Ding Y, Kong D, Yu H. Research progress on Alzheimer's disease and resveratrol. Neurochem Res 2020; 107: 9-14. [DOI:10.1007/s11064-020-03007-0] [PMID]
3. [3] de Oliveira FF, Bertolucci PH, Chen ES, de Arruda Cardoso Smith M. Pharmacological modulation of cognitive and behavioral symptoms in patients with dementia due to Alzheimer's disease. J Neurol Sci 2014; 336: 103-108. [DOI:10.1016/j.jns.2013.10.015] [PMID]
4. [4] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association work groups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement 2011; 7: 280-292. [DOI:10.1016/j.jalz.2011.03.003] [PMID] [PMCID]
5. [5] Chincarini A, Bosco P, Calvini P, Gemme G, Esposito M, Olivieri Ch, et al. Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease. Neuroimage 2011; 58: 469-480. [DOI:10.1016/j.neuroimage.2011.05.083] [PMID]
6. [6] Liu Y, Paajanen T, Zhang Y, Westman E, Wahlund LO, Simmons A, et al. Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer's disease. Neurobiol Aging 2010; 31: 1375-1385 [DOI:10.1016/j.neurobiolaging.2010.01.022] [PMID]
7. [7] Risacher SL, SaykinAJ. Neuroimaging and other biomarkers for Alzheimer's disease: the changing landscape of early detection. Annu Rev Clin Psychol 2013; 9: 621-648. [DOI:10.1146/annurev-clinpsy-050212-185535] [PMID] [PMCID]
8. [8] Bayer AJ. The role of biomarkers and imaging in the clinical diagnosis of dementia. Age Ageing 2018; 47: 641-643. [DOI:10.1093/ageing/afy004] [PMID]
9. [9] Li TQ, Wahlund LO. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques. Acta Radiol 2011; 52: 211-222. [DOI:10.1258/ar.2010.100053] [PMID]
10. [10] Targosz-Gajniak MG, Siuda JS, Wicher MM, Banasik TJ, Bujak MA, Augusciak-Duma AM, Opala G. Magnetic resonance spectroscopy as a predictor of conversion of mild cognitive impairment to dementia. J Neurol Sci 2013; 335: 58-63. [DOI:10.1016/j.jns.2013.08.023] [PMID]
11. [11] Gao F, Barker PB. Various MRS application tools for Alzheimer disease and mild cognitive impairment. Am J Neuroradiol 2014; 35: S4-11. [DOI:10.3174/ajnr.A3944] [PMID] [PMCID]
12. [12] Menezes TL, Andrade-Valona LPA, Valona MM. Magnetic resonance imaging study cannot individually distinguish individuals with mild cognitive impairment, mild Alzheimer's disease, and normal aging. Arq Neuropsiquiatr 2013; 71: 207-212. [DOI:10.1590/0004-282X20130003] [PMID]
13. [13] Watanabe T, Shiino A, Akiguchi I. Hippocampal metabolites and memory performances in patients with amnestic mild cognitive impairment and Alzheimer's disease. Neurobiol Learn Mem 2012; 97: 289-293. [DOI:10.1016/j.nlm.2012.01.006] [PMID]
14. [14] Frisoni GB, Testa C, Zorzan A, Sabattoli F, Beltramello A, Soininen H, Laakso MP. Detection of grey matter loss in mild Alzheimer's disease with voxel based morphometry. J Neurol Neurosurg Psychiatry 2002; 73: 657-664. [DOI:10.1136/jnnp.73.6.657] [PMID] [PMCID]
15. [15] Ohnishi T, Matsuda H, Tabira T, Asada T, Uno M. Changes in brain morphology in Alzheimer disease and normal ageing: is Alzheimer disease an exaggerated aging process? AJNR Am J Neuroradiol 2001; 22: 1680-1685.
16. [16] Derflingera S, Sorgb C, Gaserc C, Myers N, Arsic M, Kurz A, et al. Grey-Matter Atrophy in Alzheimer's disease is Asymmetric but not lateralized. J Alzheimers Dis 2011; 25: 347-357. [DOI:10.3233/JAD-2011-110041] [PMID]
17. [17] Shi F, Liu B, Zhou Y, Yu C, Jiang T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: Meta-analyses of MRI studies. Hippocampus 2009; 19: 1055-1064. [DOI:10.1002/hipo.20573] [PMID]
18. [18] Tumati S, Martens S, Aleman A. Magnetic resonance spectroscopy in mild cognitive impairment: systematic review and meta-analysis. Neurosci Biobehav Rev 2013; 37: 2571-2586. [DOI:10.1016/j.neubiorev.2013.08.004] [PMID]
19. [19] Kantarci K, Jack CR, Xu YC, Campeau NG, O'Brien PC, Smith GE, et al. Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: a 1H MRS study. Neurology 2000; 55: 210-217. [DOI:10.1212/WNL.55.2.210] [PMID] [PMCID]
20. [20] Modrego PJ, Fayed N, Sarasa M. Magnetic resonance spectroscopy in the prediction of early conversion from amnestic mild cognitive impairment to dementia: a prospective cohort study. BMJ Open 2011; 1: e000007. [DOI:10.1136/bmjopen-2010-000007] [PMID] [PMCID]
21. [21] Wang Z, Zhao C, Yu L, Zhou W, Li K. Regional metabolic changes in the hippocampus and posterior cingulate area detected with 3-Tesla magnetic resonance spectroscopy in patients with mild cognitive impairment and Alzheimer disease. Acta Radiol 2009; 50: 312-319. [DOI:10.1080/02841850802709219] [PMID]
22. [22] Kantarci K. 1H magnetic resonance spectroscopy in dementia. Br J Radiol 2007; 80: 146-152. [DOI:10.1259/bjr/60346217] [PMID]
23. [23] Siger M, Schuff N, Zhu X, Miller BL, Weiner MW. Regional myo-inositol concentration in mild cognitive impairment using 1H magnetic resonance spectroscopic imaging. Alzheimer Dis Assoc Disord 2009; 23: 57-62. [DOI:10.1097/WAD.0b013e3181875434] [PMID] [PMCID]
24. [24] Mihara M, Hattori N, Abe K, Sakoda S, Sawada T. Magnetic resonance spectroscopic study of Alzheimer's disease and frontotemporal dementia/Pick complex. Neuroreport 2006; 17: 413-416. [DOI:10.1097/01.wnr.0000203353.52622.05] [PMID]
25. [25] Lima TS, Honga YH, Leeb HY, Choi JY, Kim HS, Moon SY. Metabolite investigation in both anterior and posterior cingulate gyri in Alzheimer's disease spectrum using 3-tesla MR spectroscopy. Dement Geriatr Cogn Disord 2012; 33: 149-155. [DOI:10.1159/000338177] [PMID]
26. [26] Bozzali M1, Padovani A, Caltagirone C, Borroni B. Regional grey matter loss and brain disconnection across Alzheimer disease evolution. Curr Med Chem 2011; 18: 2452-2458. [DOI:10.2174/092986711795843263] [PMID]
27. [27] Salat DH1, Chen JJ, van der Kouwe AJ, Greve DN, Fischl B, Rosas HD. Hippocampal degeneration is associated with temporal and limbic gray matter/white matter tissue contrast in Alzheimer's disease. Neuroimage 2011; 54: 1795-1802. [DOI:10.1016/j.neuroimage.2010.10.034] [PMID] [PMCID]
28. [28] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages ofAlzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association work groups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement 2011; 7: 280-292. [DOI:10.1016/j.jalz.2011.03.003] [PMID] [PMCID]
29. [29] Knopman DS, Boeve BF, Petersen RC. Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia. Mayo Clin Proc 2003; 78: 1290-1308. [DOI:10.4065/78.10.1290] [PMID]
30. [30] Neugroschl J, Wang S. Alzheimer's disease: diagnosis and treatment across the spectrum of disease severity. Mt Sinai J Med 2011; 78: 596-612. [DOI:10.1002/msj.20279] [PMID] [PMCID]
31. [31] Jones BF, Barnes J, Uylings H, Fox NC, Frost C, Witter MP, Scheltens P. Differential regional atrophy of the cingulate Gyrus in Alzheimer disease: a volumetric MRI study. Cereb Cortex 2006; 16: 1701-1708. [DOI:10.1093/cercor/bhj105] [PMID]
32. [32] Blair RC, Karniski W. An alternative method for significance testing of waveform difference potentials. Psychophysiology 1993; 30: 518-524. [DOI:10.1111/j.1469-8986.1993.tb02075.x] [PMID]
33. [33] Killiany RJ, Gomez-Isla T, Moss M, Kikinis R, Sandor T, Jolesz F, et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 2000; 47: 430-439. https://doi.org/10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I [DOI:10.1002/1531-8249(200004)47:43.0.CO;2-I]
34. [34] Fouquet M, Desgranges B, Landeau B, Duchesnay E, Mézenge F, de la Sayette V, et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease. Brain 2009; 132: 2058-2067. [DOI:10.1093/brain/awp132] [PMID] [PMCID]
35. [35] Mesulam MM, Nobre AC, Kim YH, Kim YH, Parrish TB, Gitelman DR. Heterogeneity of cingulated contributions to spatial attention. Neuro Image 2001; 13: 1065-1072. [DOI:10.1006/nimg.2001.0768] [PMID]
36. [36] Smith AD. Imaging the progression of Alzheimer pathology through the brain. Proc Natl AcadSci U S A 2002; 99: 4135-4137. [DOI:10.1073/pnas.082107399] [PMID] [PMCID]
37. [37] Brun A, Englund E. Regional pattern of degeneration in Alzheimer's disease: neuronal loss and histopathological grading. Histopathology 1981; 5: 549-564. [DOI:10.1111/j.1365-2559.1981.tb01818.x] [PMID]
38. [38] Mesulam MM. A plasticity-based theory of the pathogenesis of Alzheimer's disease. Ann N Y Acad Sci 2000; 924: 42-52. [DOI:10.1111/j.1749-6632.2000.tb05559.x] [PMID]
39. [39] Thal DR, von Arnim C, Griffin WS, Yamaguchi H, Mrak RE, Attems J, Upadhaya AR. Pathology of clinical and preclinical Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci 2013; 2: S137-145. [DOI:10.1007/s00406-013-0449-5] [PMID]
40. [40] Braak H, Zetterberg H, Del Tredici K, Blennow K. Intraneuronaltauaggregationprecedes diffuse plaque deposition, but amyloid-β changes occurbeforeincreases of tau in cerebrospinalfluid. Acta Neuropathol 2013; 126: 631-641. [DOI:10.1007/s00401-013-1139-0] [PMID]
41. [41] Arriagada PV, Marzloff K, Hyman BT. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer's disease. Neurology 1992; 42: 1681-1688. [DOI:10.1212/WNL.42.9.1681] [PMID]
42. [42] Giannakopoulos P, Hof PR, Michel JP, Guimon J, Bouras C. Cerebral cortex pathology in aging and Alzheimer's disease: a quantitative survey of large hospital-based geriatric and psychiatric cohorts. Brain Res Brain Res Rev 1997; 25: 217-245. [DOI:10.1016/S0165-0173(97)00023-4]
43. [43] Rami L, Gómez-Ansón B, Bosch B, Sánchez-Valle R, Monte GC, Villar A, Molinuevo JL. Cortical brain metabolism as measured by proton spectroscopy is related to memory performance in patients with amnestic mild cognitive impairment and Alzheimer's disease. Dement Geriatr Cogn Disord 2007; 24: 274-279. [DOI:10.1159/000107487] [PMID]
44. [44] Tumatia S, MartensaS, Alemana A. Magnetic resonance spectroscopy in mild cognitive impairment: Systematic review and meta-analysis. Neurosci Biobehav Rev 2013; 37: 2571-2586. [DOI:10.1016/j.neubiorev.2013.08.004] [PMID]
45. [45] Good CD, Johnsrude I, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 2001; 14: 685-700. https://doi.org/10.1006/nimg.2001.0786 [DOI:10.1006/nimg.2001.0857]
46. [46] Luders E, Gaser C, Jancke L, Schlaug G. A voxel-based approach to gray matter asymmetries. Neuroimage 2004; 22: 656-664. [DOI:10.1016/j.neuroimage.2004.01.032] [PMID]
47. [47] Watkins KE, Paus T, Lerch JP, Zijdenbos A, Collins DL, Neelin P, et al. Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. Cereb Cortex 2001; 11: 868-877. [DOI:10.1093/cercor/11.9.868] [PMID]
48. [48] Luders E, Narr KL, Thompson PM, Rex DE, Jancke L, Toga AW. Hemispheric asymmetries in cortical thickness. Cereb Cortex 2006; 16: 1232-1238. [DOI:10.1093/cercor/bhj064] [PMID]
49. [49] Kim JH, Lee JW, Kim GH, Roh JH, Kim MJ, Seo SW, et al. Cortical asymmetries in normal, mild cognitive impairment, and Alzheimer's disease. Neurobiol Aging 2012; 33: 1959-1966. [DOI:10.1016/j.neurobiolaging.2011.06.026] [PMID]
50. [50] Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, Nordberg A. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11 C-Deuterium-L-Deprenyl: a multitracer PET paradigm combining 11C-pittsburgh compound B and 18F-FDG. J Nucl Med 2012; 53: 37-46. [DOI:10.2967/jnumed.110.087031] [PMID]
51. [51] Kantarci K, Lowe V, Przybelski SA, Senjem ML, Weigand SD, Ivnik RJ, et al. Magnetic resonance spectroscopy, β-amyloid load, and cognition in a population-based sample of cognitively normal older adults. Neurology 2011; 77: 951-958. [DOI:10.1212/WNL.0b013e31822dc7e1] [PMID] [PMCID]
52. [52] Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O'Brien PC, Smith GE, et al. Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: A 1H MRS study. Neurology 2000; 55: 210-217. [DOI:10.1212/WNL.55.2.210] [PMID] [PMCID]
53. [53] Kantarci K, Knopman DS, Dickson DW, Parisi JE, Whitwell JL, Weigand SD, et al. Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology 2008; 248: 210-220. [DOI:10.1148/radiol.2481071590] [PMID] [PMCID]
54. [54] Karas GB, Scheltens P, Rombouts S, Visser PJ, van Schijndel RA, Fox NC, Barkhof F. Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease. Neuroimage 2004; 23: 708-716. [DOI:10.1016/j.neuroimage.2004.07.006] [PMID]
55. [55] Karas GB, Burton EJ, Rombouts SA, van Schijndel RA, O'Brien JT, Scheltens Ph, et al. A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry. Neuroimage 2003; 18: 895-907. [DOI:10.1016/S1053-8119(03)00041-7]
56. [56] Thompson PM, Mega RS, Woods RP, Zoumalan CI, Lindshield CJ, Blanton RE, et al. Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. Cereb Cortex 2001; 11: 1-16. [DOI:10.1093/cercor/11.1.1] [PMID]
57. [57] Baron JC, Chetelat G, Desgranges B, G Perchey, Landeau B, de la Sayette V, Eustache F. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage 2001; 14: 298-309. [DOI:10.1006/nimg.2001.0848] [PMID]
58. [58] Sabine D, Christian S, Christian G, Myers N, Arsic M, Kurz A, et al. Grey-Matter atrophy in Alzheimer's disease is asymmetric but not lateralized. J Alzheimers Dis 2011; 25: 347-357. [DOI:10.3233/JAD-2011-110041] [PMID]
59. [59] Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, et al. Dynamics of gray matter loss in Alzheimer's disease. J Neurosci 2003; 23: 994-1005. [DOI:10.1523/JNEUROSCI.23-03-00994.2003] [PMID] [PMCID]
60. [60] Janke AL, de ZubicaraGy, Rose SE, Griffin M, Chalk JB, Galloway GJ. 4D deformation modeling of cortical disease progression in Alzheimer's dementia. Magn Reson Med 2001; 46: 661-666. [DOI:10.1002/mrm.1243] [PMID]
61. [61] Ott BR, Heindel WC, Tan Z, Noto RB. Lateralized cortical perfusion in women with Alzheimer's disease. J Gend Specif Med 2000; 3: 29-35.
62. [62] Smith ME. Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: a meta-analysis of structural MRI studies. Hippocampus 2005; 15: 798-807. [DOI:10.1002/hipo.20102] [PMID]
63. [63] Giannakopoulos P, Kovari E, Herrmann FR, Hof PR, Bouras C. Interhemispheric distribution of Alzheimer disease and vascular pathology in brain aging. Stroke 2009; 40: 983-986. [DOI:10.1161/STROKEAHA.108.530337] [PMID] [PMCID]
64. [64] Abedelahi A, Hasanzadeh Namaghi H, Hadizadeh Khrazi H, Joghtaie MT, Negahdar F, Shakeri N. A morphometeric magnetic resonance imaging study of age and gender-related volumetric changes of putamen nucleus in healthy humans. Koomesh 2010; 11: 231-239. (Persian).
65. [65] Chen Q, Boeve BF, Tosakulwong N, Lesnick T, Brushaber D, Dheel C, et al. Frontal lobe 1H MR spectroscopy in asymptomatic and symptomatic MAPT mutation carriers. Neurology 2019; 93: 758-765. [DOI:10.1212/WNL.0000000000007961] [PMID] [PMCID]
66. [66] Yeh YC, Li CW, Kuo YT, Huang MF, Liu TL, Jaw TS, et al. Association between altered neurochemical metabolites and apathy in patients with Alzheimer's disease. Int Psychogeriatr 2018; 30: 761-768. [DOI:10.1017/S1041610217002381] [PMID]
67. [1] Alzheimer's Association. Alzheimer's disease facts and figures. Alzheimer's Dement 2015; 11: 332-384. [DOI:10.1016/j.jalz.2015.02.003] [PMID]
68. [2] Yan Y, Yang H, Xie Y, Ding Y, Kong D, Yu H. Research progress on Alzheimer's disease and resveratrol. Neurochem Res 2020; 107: 9-14. [DOI:10.1007/s11064-020-03007-0] [PMID]
69. [3] de Oliveira FF, Bertolucci PH, Chen ES, de Arruda Cardoso Smith M. Pharmacological modulation of cognitive and behavioral symptoms in patients with dementia due to Alzheimer's disease. J Neurol Sci 2014; 336: 103-108. [DOI:10.1016/j.jns.2013.10.015] [PMID]
70. [4] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association work groups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement 2011; 7: 280-292. [DOI:10.1016/j.jalz.2011.03.003] [PMID] [PMCID]
71. [5] Chincarini A, Bosco P, Calvini P, Gemme G, Esposito M, Olivieri Ch, et al. Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease. Neuroimage 2011; 58: 469-480. [DOI:10.1016/j.neuroimage.2011.05.083] [PMID]
72. [6] Liu Y, Paajanen T, Zhang Y, Westman E, Wahlund LO, Simmons A, et al. Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer's disease. Neurobiol Aging 2010; 31: 1375-1385 [DOI:10.1016/j.neurobiolaging.2010.01.022] [PMID]
73. [7] Risacher SL, SaykinAJ. Neuroimaging and other biomarkers for Alzheimer's disease: the changing landscape of early detection. Annu Rev Clin Psychol 2013; 9: 621-648. [DOI:10.1146/annurev-clinpsy-050212-185535] [PMID] [PMCID]
74. [8] Bayer AJ. The role of biomarkers and imaging in the clinical diagnosis of dementia. Age Ageing 2018; 47: 641-643. [DOI:10.1093/ageing/afy004] [PMID]
75. [9] Li TQ, Wahlund LO. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques. Acta Radiol 2011; 52: 211-222. [DOI:10.1258/ar.2010.100053] [PMID]
76. [10] Targosz-Gajniak MG, Siuda JS, Wicher MM, Banasik TJ, Bujak MA, Augusciak-Duma AM, Opala G. Magnetic resonance spectroscopy as a predictor of conversion of mild cognitive impairment to dementia. J Neurol Sci 2013; 335: 58-63. [DOI:10.1016/j.jns.2013.08.023] [PMID]
77. [11] Gao F, Barker PB. Various MRS application tools for Alzheimer disease and mild cognitive impairment. Am J Neuroradiol 2014; 35: S4-11. [DOI:10.3174/ajnr.A3944] [PMID] [PMCID]
78. [12] Menezes TL, Andrade-Valona LPA, Valona MM. Magnetic resonance imaging study cannot individually distinguish individuals with mild cognitive impairment, mild Alzheimer's disease, and normal aging. Arq Neuropsiquiatr 2013; 71: 207-212. [DOI:10.1590/0004-282X20130003] [PMID]
79. [13] Watanabe T, Shiino A, Akiguchi I. Hippocampal metabolites and memory performances in patients with amnestic mild cognitive impairment and Alzheimer's disease. Neurobiol Learn Mem 2012; 97: 289-293. [DOI:10.1016/j.nlm.2012.01.006] [PMID]
80. [14] Frisoni GB, Testa C, Zorzan A, Sabattoli F, Beltramello A, Soininen H, Laakso MP. Detection of grey matter loss in mild Alzheimer's disease with voxel based morphometry. J Neurol Neurosurg Psychiatry 2002; 73: 657-664. [DOI:10.1136/jnnp.73.6.657] [PMID] [PMCID]
81. [15] Ohnishi T, Matsuda H, Tabira T, Asada T, Uno M. Changes in brain morphology in Alzheimer disease and normal ageing: is Alzheimer disease an exaggerated aging process? AJNR Am J Neuroradiol 2001; 22: 1680-1685.
82. [16] Derflingera S, Sorgb C, Gaserc C, Myers N, Arsic M, Kurz A, et al. Grey-Matter Atrophy in Alzheimer's disease is Asymmetric but not lateralized. J Alzheimers Dis 2011; 25: 347-357. [DOI:10.3233/JAD-2011-110041] [PMID]
83. [17] Shi F, Liu B, Zhou Y, Yu C, Jiang T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: Meta-analyses of MRI studies. Hippocampus 2009; 19: 1055-1064. [DOI:10.1002/hipo.20573] [PMID]
84. [18] Tumati S, Martens S, Aleman A. Magnetic resonance spectroscopy in mild cognitive impairment: systematic review and meta-analysis. Neurosci Biobehav Rev 2013; 37: 2571-2586. [DOI:10.1016/j.neubiorev.2013.08.004] [PMID]
85. [19] Kantarci K, Jack CR, Xu YC, Campeau NG, O'Brien PC, Smith GE, et al. Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: a 1H MRS study. Neurology 2000; 55: 210-217. [DOI:10.1212/WNL.55.2.210] [PMID] [PMCID]
86. [20] Modrego PJ, Fayed N, Sarasa M. Magnetic resonance spectroscopy in the prediction of early conversion from amnestic mild cognitive impairment to dementia: a prospective cohort study. BMJ Open 2011; 1: e000007. [DOI:10.1136/bmjopen-2010-000007] [PMID] [PMCID]
87. [21] Wang Z, Zhao C, Yu L, Zhou W, Li K. Regional metabolic changes in the hippocampus and posterior cingulate area detected with 3-Tesla magnetic resonance spectroscopy in patients with mild cognitive impairment and Alzheimer disease. Acta Radiol 2009; 50: 312-319. [DOI:10.1080/02841850802709219] [PMID]
88. [22] Kantarci K. 1H magnetic resonance spectroscopy in dementia. Br J Radiol 2007; 80: 146-152. [DOI:10.1259/bjr/60346217] [PMID]
89. [23] Siger M, Schuff N, Zhu X, Miller BL, Weiner MW. Regional myo-inositol concentration in mild cognitive impairment using 1H magnetic resonance spectroscopic imaging. Alzheimer Dis Assoc Disord 2009; 23: 57-62. [DOI:10.1097/WAD.0b013e3181875434] [PMID] [PMCID]
90. [24] Mihara M, Hattori N, Abe K, Sakoda S, Sawada T. Magnetic resonance spectroscopic study of Alzheimer's disease and frontotemporal dementia/Pick complex. Neuroreport 2006; 17: 413-416. [DOI:10.1097/01.wnr.0000203353.52622.05] [PMID]
91. [25] Lima TS, Honga YH, Leeb HY, Choi JY, Kim HS, Moon SY. Metabolite investigation in both anterior and posterior cingulate gyri in Alzheimer's disease spectrum using 3-tesla MR spectroscopy. Dement Geriatr Cogn Disord 2012; 33: 149-155. [DOI:10.1159/000338177] [PMID]
92. [26] Bozzali M1, Padovani A, Caltagirone C, Borroni B. Regional grey matter loss and brain disconnection across Alzheimer disease evolution. Curr Med Chem 2011; 18: 2452-2458. [DOI:10.2174/092986711795843263] [PMID]
93. [27] Salat DH1, Chen JJ, van der Kouwe AJ, Greve DN, Fischl B, Rosas HD. Hippocampal degeneration is associated with temporal and limbic gray matter/white matter tissue contrast in Alzheimer's disease. Neuroimage 2011; 54: 1795-1802. [DOI:10.1016/j.neuroimage.2010.10.034] [PMID] [PMCID]
94. [28] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages ofAlzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association work groups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement 2011; 7: 280-292. [DOI:10.1016/j.jalz.2011.03.003] [PMID] [PMCID]
95. [29] Knopman DS, Boeve BF, Petersen RC. Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia. Mayo Clin Proc 2003; 78: 1290-1308. [DOI:10.4065/78.10.1290] [PMID]
96. [30] Neugroschl J, Wang S. Alzheimer's disease: diagnosis and treatment across the spectrum of disease severity. Mt Sinai J Med 2011; 78: 596-612. [DOI:10.1002/msj.20279] [PMID] [PMCID]
97. [31] Jones BF, Barnes J, Uylings H, Fox NC, Frost C, Witter MP, Scheltens P. Differential regional atrophy of the cingulate Gyrus in Alzheimer disease: a volumetric MRI study. Cereb Cortex 2006; 16: 1701-1708. [DOI:10.1093/cercor/bhj105] [PMID]
98. [32] Blair RC, Karniski W. An alternative method for significance testing of waveform difference potentials. Psychophysiology 1993; 30: 518-524. [DOI:10.1111/j.1469-8986.1993.tb02075.x] [PMID]
99. [33] Killiany RJ, Gomez-Isla T, Moss M, Kikinis R, Sandor T, Jolesz F, et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 2000; 47: 430-439. https://doi.org/10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I [DOI:10.1002/1531-8249(200004)47:43.0.CO;2-I]
100. [34] Fouquet M, Desgranges B, Landeau B, Duchesnay E, Mézenge F, de la Sayette V, et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease. Brain 2009; 132: 2058-2067. [DOI:10.1093/brain/awp132] [PMID] [PMCID]
101. [35] Mesulam MM, Nobre AC, Kim YH, Kim YH, Parrish TB, Gitelman DR. Heterogeneity of cingulated contributions to spatial attention. Neuro Image 2001; 13: 1065-1072. [DOI:10.1006/nimg.2001.0768] [PMID]
102. [36] Smith AD. Imaging the progression of Alzheimer pathology through the brain. Proc Natl AcadSci U S A 2002; 99: 4135-4137. [DOI:10.1073/pnas.082107399] [PMID] [PMCID]
103. [37] Brun A, Englund E. Regional pattern of degeneration in Alzheimer's disease: neuronal loss and histopathological grading. Histopathology 1981; 5: 549-564. [DOI:10.1111/j.1365-2559.1981.tb01818.x] [PMID]
104. [38] Mesulam MM. A plasticity-based theory of the pathogenesis of Alzheimer's disease. Ann N Y Acad Sci 2000; 924: 42-52. [DOI:10.1111/j.1749-6632.2000.tb05559.x] [PMID]
105. [39] Thal DR, von Arnim C, Griffin WS, Yamaguchi H, Mrak RE, Attems J, Upadhaya AR. Pathology of clinical and preclinical Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci 2013; 2: S137-145. [DOI:10.1007/s00406-013-0449-5] [PMID]
106. [40] Braak H, Zetterberg H, Del Tredici K, Blennow K. Intraneuronaltauaggregationprecedes diffuse plaque deposition, but amyloid-β changes occurbeforeincreases of tau in cerebrospinalfluid. Acta Neuropathol 2013; 126: 631-641. [DOI:10.1007/s00401-013-1139-0] [PMID]
107. [41] Arriagada PV, Marzloff K, Hyman BT. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer's disease. Neurology 1992; 42: 1681-1688. [DOI:10.1212/WNL.42.9.1681] [PMID]
108. [42] Giannakopoulos P, Hof PR, Michel JP, Guimon J, Bouras C. Cerebral cortex pathology in aging and Alzheimer's disease: a quantitative survey of large hospital-based geriatric and psychiatric cohorts. Brain Res Brain Res Rev 1997; 25: 217-245. [DOI:10.1016/S0165-0173(97)00023-4]
109. [43] Rami L, Gómez-Ansón B, Bosch B, Sánchez-Valle R, Monte GC, Villar A, Molinuevo JL. Cortical brain metabolism as measured by proton spectroscopy is related to memory performance in patients with amnestic mild cognitive impairment and Alzheimer's disease. Dement Geriatr Cogn Disord 2007; 24: 274-279. [DOI:10.1159/000107487] [PMID]
110. [44] Tumatia S, MartensaS, Alemana A. Magnetic resonance spectroscopy in mild cognitive impairment: Systematic review and meta-analysis. Neurosci Biobehav Rev 2013; 37: 2571-2586. [DOI:10.1016/j.neubiorev.2013.08.004] [PMID]
111. [45] Good CD, Johnsrude I, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 2001; 14: 685-700. https://doi.org/10.1006/nimg.2001.0786 [DOI:10.1006/nimg.2001.0857]
112. [46] Luders E, Gaser C, Jancke L, Schlaug G. A voxel-based approach to gray matter asymmetries. Neuroimage 2004; 22: 656-664. [DOI:10.1016/j.neuroimage.2004.01.032] [PMID]
113. [47] Watkins KE, Paus T, Lerch JP, Zijdenbos A, Collins DL, Neelin P, et al. Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. Cereb Cortex 2001; 11: 868-877. [DOI:10.1093/cercor/11.9.868] [PMID]
114. [48] Luders E, Narr KL, Thompson PM, Rex DE, Jancke L, Toga AW. Hemispheric asymmetries in cortical thickness. Cereb Cortex 2006; 16: 1232-1238. [DOI:10.1093/cercor/bhj064] [PMID]
115. [49] Kim JH, Lee JW, Kim GH, Roh JH, Kim MJ, Seo SW, et al. Cortical asymmetries in normal, mild cognitive impairment, and Alzheimer's disease. Neurobiol Aging 2012; 33: 1959-1966. [DOI:10.1016/j.neurobiolaging.2011.06.026] [PMID]
116. [50] Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, Nordberg A. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11 C-Deuterium-L-Deprenyl: a multitracer PET paradigm combining 11C-pittsburgh compound B and 18F-FDG. J Nucl Med 2012; 53: 37-46. [DOI:10.2967/jnumed.110.087031] [PMID]
117. [51] Kantarci K, Lowe V, Przybelski SA, Senjem ML, Weigand SD, Ivnik RJ, et al. Magnetic resonance spectroscopy, β-amyloid load, and cognition in a population-based sample of cognitively normal older adults. Neurology 2011; 77: 951-958. [DOI:10.1212/WNL.0b013e31822dc7e1] [PMID] [PMCID]
118. [52] Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O'Brien PC, Smith GE, et al. Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: A 1H MRS study. Neurology 2000; 55: 210-217. [DOI:10.1212/WNL.55.2.210] [PMID] [PMCID]
119. [53] Kantarci K, Knopman DS, Dickson DW, Parisi JE, Whitwell JL, Weigand SD, et al. Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology 2008; 248: 210-220. [DOI:10.1148/radiol.2481071590] [PMID] [PMCID]
120. [54] Karas GB, Scheltens P, Rombouts S, Visser PJ, van Schijndel RA, Fox NC, Barkhof F. Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease. Neuroimage 2004; 23: 708-716. [DOI:10.1016/j.neuroimage.2004.07.006] [PMID]
121. [55] Karas GB, Burton EJ, Rombouts SA, van Schijndel RA, O'Brien JT, Scheltens Ph, et al. A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry. Neuroimage 2003; 18: 895-907. [DOI:10.1016/S1053-8119(03)00041-7]
122. [56] Thompson PM, Mega RS, Woods RP, Zoumalan CI, Lindshield CJ, Blanton RE, et al. Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. Cereb Cortex 2001; 11: 1-16. [DOI:10.1093/cercor/11.1.1] [PMID]
123. [57] Baron JC, Chetelat G, Desgranges B, G Perchey, Landeau B, de la Sayette V, Eustache F. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage 2001; 14: 298-309. [DOI:10.1006/nimg.2001.0848] [PMID]
124. [58] Sabine D, Christian S, Christian G, Myers N, Arsic M, Kurz A, et al. Grey-Matter atrophy in Alzheimer's disease is asymmetric but not lateralized. J Alzheimers Dis 2011; 25: 347-357. [DOI:10.3233/JAD-2011-110041] [PMID]
125. [59] Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, et al. Dynamics of gray matter loss in Alzheimer's disease. J Neurosci 2003; 23: 994-1005. [DOI:10.1523/JNEUROSCI.23-03-00994.2003] [PMID] [PMCID]
126. [60] Janke AL, de ZubicaraGy, Rose SE, Griffin M, Chalk JB, Galloway GJ. 4D deformation modeling of cortical disease progression in Alzheimer's dementia. Magn Reson Med 2001; 46: 661-666. [DOI:10.1002/mrm.1243] [PMID]
127. [61] Ott BR, Heindel WC, Tan Z, Noto RB. Lateralized cortical perfusion in women with Alzheimer's disease. J Gend Specif Med 2000; 3: 29-35.
128. [62] Smith ME. Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: a meta-analysis of structural MRI studies. Hippocampus 2005; 15: 798-807. [DOI:10.1002/hipo.20102] [PMID]
129. [63] Giannakopoulos P, Kovari E, Herrmann FR, Hof PR, Bouras C. Interhemispheric distribution of Alzheimer disease and vascular pathology in brain aging. Stroke 2009; 40: 983-986. [DOI:10.1161/STROKEAHA.108.530337] [PMID] [PMCID]
130. [64] Abedelahi A, Hasanzadeh Namaghi H, Hadizadeh Khrazi H, Joghtaie MT, Negahdar F, Shakeri N. A morphometeric magnetic resonance imaging study of age and gender-related volumetric changes of putamen nucleus in healthy humans. Koomesh 2010; 11: 231-239. (Persian).
131. [65] Chen Q, Boeve BF, Tosakulwong N, Lesnick T, Brushaber D, Dheel C, et al. Frontal lobe 1H MR spectroscopy in asymptomatic and symptomatic MAPT mutation carriers. Neurology 2019; 93: 758-765. [DOI:10.1212/WNL.0000000000007961] [PMID] [PMCID]
132. [66] Yeh YC, Li CW, Kuo YT, Huang MF, Liu TL, Jaw TS, et al. Association between altered neurochemical metabolites and apathy in patients with Alzheimer's disease. Int Psychogeriatr 2018; 30: 761-768. [DOI:10.1017/S1041610217002381] [PMID]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saatchian E, Ehsani S, Montazerabadi A. Application of magnetic resonance spectroscopy for evaluating metabolic alteration in anterior cingulate cortex in Alzheimer’s disease. Koomesh 1399; 22 (4) :671-677
URL: http://koomeshjournal.semums.ac.ir/article-1-6180-fa.html

ساعت چیان عرفان، احسانی سینا، منتظرابدی علیرضا. کاربرد طیف نگاری تشدید مغناطیسی در بررسی تغییرات متابولیک قشر سینگولیت قدامی در بیماری آلزایمر. كومش. 1399; 22 (4) :671-677

URL: http://koomeshjournal.semums.ac.ir/article-1-6180-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
جلد 22، شماره 4 - ( پائیز 1399 ) برگشت به فهرست نسخه ها
کومش Koomesh
Persian site map - English site map - Created in 0.05 seconds with 42 queries by YEKTAWEB 4645