[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 20, Issue 4 (Autumn 2018) ::
koomesh 2018, 20(4): 657-666 Back to browse issues page
Determination of risk factors for predicting pulmonary embolism using Bayesian networks
Farzaneh Feizmanesh , Ali Asghar Safaei * , Keivan Gohari Moghadam
Abstract:   (669 Views)
Introduction: Pulmonary embolism is the third leading cause of cardiovascular death after Myocardial infarction and stroke. At the same time, it is the most preventable cause of death for hospitalized patients. Importantly the diagnosis and prediction of pulmonary embolism requires flexible decision-making models, both for the presence of clinical interventions as well as for the variety of local diagnostic resources, Bayesian networks that fully meet these needs. Accordingly determining the risk factors for pulmonary embolism in hospitalized patients and presenting the model for predicting its occurrence through modeling using Bayesian networks have been proposed as a therapeutic necessity.
Materials and Methods: The present research is descriptive-analytic study. The data used in the study included risk factors affecting the pulmonary embolism and the history of hospitalized patients in pulmonary section of Shariati hospital in Tehran were collected in Excel format. Bayesian prediction model in two modes (risk factors determined using the proposed scenario and risk factors according to the expert physician) is obtained using GENIE software and the accuracy of the diagnosis of pulmonary embolism was evaluated.
Results: The results showed that among the risk factors of the disease, the history of thromboembolic pulmonary, history of deep vein thrombosis, body mass index above 30, recent surgery, immobilization of long-term, SLE, antiphospholipid syndrome, heart failure and pneumonia respectively, are the most important risk factors for pulmonary embolism. And the model predicts the scenario proposed has better performance.
Conclusion: Such plans can facilitate the process of assessing the risk of pulmonary embolism in hospitalized patients, in order to facilitate appropriate preventive measures, and to improve preventive methods and, consequently, diagnosis and treatment programs.
Keywords: Pulmonary Embolism, Prognostic, Bayesian Networks, Prediction Model, Risk Factors
Full-Text [PDF 1972 kb]   (97 Downloads)    
Type of Study: Research | Subject: General
Received: 2017/12/6 | Accepted: 2018/04/30 | Published: 2018/09/23
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Feizmanesh F, Safaei A A, Gohari Moghadam K. Determination of risk factors for predicting pulmonary embolism using Bayesian networks. koomesh. 2018; 20 (4) :657-666
URL: http://koomeshjournal.semums.ac.ir/article-1-4475-en.html

Volume 20, Issue 4 (Autumn 2018) Back to browse issues page
کومش Koomesh
Persian site map - English site map - Created in 0.05 seconds with 32 queries by YEKTAWEB 3844