اکثر مکاتبات کومش از طریق ایمیل سایت می باشد. لطفا Spam ایمیل خود را نیز چک نمایید.
   [صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: جلد 24، شماره 1 - ( بهمن و اسفند 1400 ) ::
جلد 24 شماره 1 صفحات 138-128 برگشت به فهرست نسخه ها
مقایسه کارایی الگوریتم‌های یادگیری ماشین برای ایجاد یک مدل پیش‌بینی‌کننده مرگ و میر بیماران بستری مبتلاء به کووید-19
مصطفی شنبه زاده ، علی ولی نژادی ، رامین افراه ، هادی کاظمی آرپناهی* ، اعظم اروجی ، محمدرضا کفاشیان
چکیده:   (695 مشاهده)
هدف: شیوع سریع ویروس SARS-CoV-2 در سراسر دنیا، سیستم‌های مراقبت سلامت را با چالش‌های جدی و غیر منتظره در پیش‌بینی رفتار و پیامدهای بیماری روبرو کرده است. برای غلبه بر این چالش‌ها و ابهامات، هدف مطالعه حاضر ایجاد و اعتبارسنجی چند مدل پیش‌بینی مبتنی بر تکنیک‌های یادگیری ماشین به منظور تعیین ریسک مرگ بیماران بستری شده مبتلاء به کووید-19 و انتخاب بهترین مدل می‌باشد.
مواد و روشها: داده‌های 1224 بیمار بستری ثبت شده با تشخیص قطعی کووید-19 از پایگاه داده سامانه ثبت بیماران کووید-19 شهر ایلام استخراج شدند. سپس پارامترهای تاثیرگذار در وقوع مرگ بیماران کووید-19 شناسایی و به عنوان ورودی الگوریتم‌های یادگیری ماشین منتخب شامل کای- نزدیک‌ترین همسایه (k-NN)، ماشین بردار پشتیبان (SVM)، رگرسیون لجیستیک (LR) و جنگل تصادفی (RF) استفاده شدند. در نهایت عملکرد مدل‌های طراحی شده بر اساس معیارهای ارزیابی بر گرفته از ماتریکس آشفتگی (Confusion Matrix) مورد مقایسه قرار گرفت و مناسب‌ترین مدل پیش‌بینی‌کننده شناسایی گردید.
یافتهها: 17 پارامتر به عنوان متغیرهای تاثیرگذار در مرگ و میر کووید-19 شناسایی شدند. پس از اندازه‌گیری و مقایسه عملکرد الگوریتم‌های یادگیری ماشین، الگوریتم k-NN با دقت 21/94%، صحت 74/93%، فراخوانی 100%، معیار اف 2/93% و  سطح زیر نمودار ROC 23/92% عملکرد بهتری را به دست آورد.
نتیجهگیری: الگوریتم KNN قادر به پیش‌بینی خطر مرگ و میر بیماران کووید-19 با یک سطح مناسب از صحت و اطمینان به منظور پیش‌بینی موثر افراد پرخطر و انتخاب مداخله مناسب توسط متخصصین پزشکی است.
 
واژه‌های کلیدی: کووید-19، کرونا ویروس، هوش مصنوعی، یادگیری ماشین، داده کاوی
متن کامل [PDF 1258 kb]   (221 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى
دریافت: 1399/12/11 | پذیرش: 1400/4/12 | انتشار: 1400/10/30
فهرست منابع
1. [1] Tang D, Comish P, Kang R. The hallmarks of COVID-19 disease. Plos Pathogens 2020; 16: e1008536. [DOI:10.1371/journal.ppat.1008536] [PMID] [PMCID]
2. [2] Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet 2020; 395: 1033-1034. [DOI:10.1016/S0140-6736(20)30628-0]
3. [3] Mirmohammadkhani M, Paknazar F, Rashidy-Pour A. Evaluation of the epidemiological pattern of COVID-19 applying basic reproduction number: an educational review article. Koomesh 2020; 22. (Persian). [DOI:10.29252/koomesh.22.3.373]
4. [4] Allam Z, Jones DS, editors. On the coronavirus (COVID-19) outbreak and the smart city network: universal data sharing standards coupled with artificial intelligence (AI) to benefit urban health monitoring and management. Healthcare; 2020: Multidisciplinary Digital Publishing Institute. [DOI:10.3390/healthcare8010046] [PMID] [PMCID]
5. [5] Chaudari SN, Mene SP, Bora RM, Somavanshi KN.Role of Internet of Things (IOT) In Pandemic Covid-19 Condition. Retreived September, 2020, 9: 2020‏.
6. [6] Peck KRJCM, Infection. Early diagnosis and rapid isolation: response to COVID-19 outbreak in Korea. Clin Microbiol Infect 2020; 26: 805-807. [DOI:10.1016/j.cmi.2020.04.025] [PMID] [PMCID]
7. [7] Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ 2020; 369. [DOI:10.1136/bmj.m1328] [PMID] [PMCID]
8. [8] Chamola V, Hassija V, Gupta V, Guizani M. A comprehensive review of the COVID-19 pandemic and the role of IoT, Drones, AI, Blockchain, and 5G in managing its impact. IEEE Access 2020; 8: 90225-90265. [DOI:10.1109/ACCESS.2020.2992341]
9. [9] Montazeri M. Machine learning models for predicting the diagnosis of liver disease. Koomesh 2014; 16. (Persian).
10. [10] Pan P, Li Y, Xiao Y, Han B, Su L, Su M, et al. Prognostic Assessment of COVID-19 in the Intensive Care Unit by Machine Learning Methods: Model Development and Validation. J Med Int Res 2020; 22: e23128. [DOI:10.2196/23128] [PMID] [PMCID]
11. [11] Parchure P, Joshi H, Dharmarajan K, Freeman R, Reich DL, Mazumdar M, et al. Development and validation of a machine learning-based prediction model for near-term in-hospital mortality among patients with COVID-19. BMJ Support Palliat Care 2020. [DOI:10.1136/bmjspcare-2020-002602] [PMID]
12. [12] Ryan L, Lam C, Mataraso S, Allen A, Green-Saxena A, Pellegrini E, et al. Mortality prediction model for the triage of COVID-19, pneumonia, and mechanically ventilated ICU patients: a retrospective study. Ann Med Surg (Lond) 2020; 59: 207-216. [DOI:10.1016/j.amsu.2020.09.044] [PMID] [PMCID]
13. [13] Yadaw AS, Li YC, Bose S, Iyengar R, Bunyavanich S, Pandey G. Clinical features of COVID-19 mortality: development and validation of a clinical prediction model. Lancet Digit Health 2020; 2: e516-e525. [DOI:10.1016/S2589-7500(20)30217-X]
14. [14] Yan L, Zhang HT, Goncalves J, Xiao Y, Wang M, Guo Y, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell 2020; 2: 283-288. [DOI:10.1038/s42256-020-0180-7]
15. [15] Zhao Z, Chen A, Hou W, Graham JM, Li H, Richman PS, et al. Prediction model and risk scores of ICU admission and mortality in COVID-19. PloS One 2020; 15: e0236618. [DOI:10.1371/journal.pone.0236618] [PMID] [PMCID]
16. [16] Zhou Y, He Y, Yang H, Yu H, Wang T, Chen Z, et al. Exploiting an early warning Nomogram for predicting the risk of ICU admission in patients with COVID-19: a multi-center study in China. Scand J Trauma Resusc Emerg Med 2020; 28: 1-13. [DOI:10.1186/s13049-020-00795-w] [PMID] [PMCID]
17. [17] Kaiafas KN. Clinical Decision Support Tools and the COVID-19 Pandemic. J Christ Nurs 2020; 37: 192. [DOI:10.1097/CNJ.0000000000000737] [PMID]
18. [18] McRae MP, Simmons GW, Christodoulides NJ, Lu Z, Kang SK, Fenyo D, et al. Clinical decision support tool and rapid point-of-care platform for determining disease severity in patients with COVID-19. Lab Chip 2020; 20: 2075-2085. [DOI:10.1039/D0LC00373E] [PMID] [PMCID]
19. [19] Bredmose PP, Diczbalis M, Butterfield E, Habig K, Pearce A, Osbakk SA, et al. Decision support tool and suggestions for the development of guidelines for the helicopter transport of patients with COVID-19. Scand J Trauma Resusc Emerg Med 2020; 28: 43. [DOI:10.1186/s13049-020-00736-7] [PMID] [PMCID]
20. [20] Albahri A, Hamid RA. Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): a systematic review. J Med Syst 2020; 44: 1-11. [DOI:10.1007/s10916-020-01582-x] [PMID] [PMCID]
21. [21] Mohammadi F, Kouzehgari S. Predicting the prevalence of COVID-19 and its mortality rate in Iran using lyapunov exponent. J Inflamm Dis 2020; 24: 108-123. (Persian). [DOI:10.32598/JQUMS.24.2.2415.1]
22. [22] Mohammadzadeh N, Shahriary M, Shirmohammadlou N, Lohrasbi V. A glance at the prevalence of coronavirus disease 19 (COVID-19) in Iran: Strengths and weaknesses. Infect Control Hosp Epidemiol 2020; 41: 1479-1482. [DOI:10.1017/ice.2020.193] [PMID] [PMCID]
23. [23] Ramsay MA, Usman M, Lagow E, Mendoza M, Untalan E, De Vol E. The accuracy, precision and reliability of measuring ventilatory rate and detecting ventilatory pause by rainbow acoustic monitoring and capnometry. Anesth Analg 2013; 117: 69-75. [DOI:10.1213/ANE.0b013e318290c798] [PMID]
24. [24] Evans JR, Fisher RP. Eyewitness memory: Balancing the accuracy, precision and quantity of information through metacognitive monitoring and control. Appl Cogn Psychol 2011; 25: 501-508. [DOI:10.1002/acp.1722]
25. [25] Brownlee J. Data preparation for machine learning: data cleaning, feature selection, and data transforms in python: Machine Learning Mastery; 2020.
26. [26] Allenbach Y, Saadoun D, Maalouf G, Vieira M, Hellio A, Boddaert J, et al. Development of a multivariate prediction model of intensive care unit transfer or death: A French prospective cohort study of hospitalized COVID-19 patients. PloS One 2020; 15: e0240711. [DOI:10.1371/journal.pone.0240711] [PMID] [PMCID]
27. [27] Booth AL, Abels E, McCaffrey P. D evelopment of a prognostic model for mortality in COVID-19 infection using machine learning. Modern Pathol 2021; 34: 522-531. [DOI:10.1038/s41379-020-00700-x] [PMID] [PMCID]
28. [28] Hu H, Yao N, Qiu Y. Comparing rapid scoring systems in mortality prediction of critically Ill patients with novel coronavirus disease. Acad Emerg Med 2020; 27: 461-468. [DOI:10.1111/acem.13992] [PMID] [PMCID]
29. [29] Wu G, Yang P, Xie Y, Woodruff HC, Rao X, Guiot J, et al. Development of a clinical decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: an international multicentre study. Eur Respir J 2020; 56: 2001104. [DOI:10.1183/13993003.01104-2020] [PMID] [PMCID]
30. [30] Zhang Y, Xin Y, Li Q, Ma J, Li S, Lv X, et al. Empirical study of seven data mining algorithms on different characteristics of datasets for biomedical classification applications. Biomed Eng Online 2017; 16: 125. [DOI:10.1186/s12938-017-0416-x] [PMID] [PMCID]
31. [31] Chin V, Samia NI, Marchant R, Rosen O, Ioannidis JP, Tanner MA, et al. A case study in model failure? COVID-19 daily deaths and ICU bed utilisation predictions in New York State. Eur J Epidemiol 2020; 35: 733-742. [DOI:10.1007/s10654-020-00669-6] [PMID] [PMCID]
32. [32] Das AK, Mishra S, Gopalan SS. Predicting CoVID-19 community mortality risk using machine learning and development of an online prognostic tool. PeerJ 2020; 8: e10083. [DOI:10.7717/peerj.10083] [PMID] [PMCID]
33. [33] Yan L, Zhang HT, Goncalves J, Xiao Y, Wang M, Guo Y, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Machine Intell 2020; 1-6. [DOI:10.1038/s42256-020-0180-7]
34. [34] Assaf D, Gutman Ya, Neuman Y, Segal G, Amit S, Gefen-Halevi S, et al. Utilization of machine-learning models to accurately predict the risk for critical COVID-19. Intern Emerg Med 2020; 15: 1435-1443. [DOI:10.1007/s11739-020-02475-0] [PMID] [PMCID]
35. [35] Gao Y, Cai GY, Fang W, Li HY, Wang SY, Chen L, et al. Machine learning based early warning system enables accurate mortality risk prediction for COVID-19. Nat Commun 2020; 11: 1-10. [DOI:10.1038/s41467-020-18684-2] [PMID] [PMCID]
36. [36] Agieb R. Machine learning models for the prediction the necessity of resorting to icu of covid-19 patients. Int J Adv Trends Com Sci Eng. 2020; 6980-4. [DOI:10.30534/ijatcse/2020/15952020]
37. [37] Bhargava A, Szpunar SM, Sharma M, Fukushima EA, Hoshi S, Levine M, et al. Clinical features and risk factors for in-hospital mortality from COVID-19 infection at a tertiary care medical center, at the onset of the US COVID-19 pandemic. J Intensive Care Med 2021; 36: 711-718. [DOI:10.1177/08850666211001799] [PMID] [PMCID]
38. [38] Chilimuri S, Sun H, Alemam A, Mantri N, Shehi E, Tejada J, et al. Predictors of mortality in adults admitted with COVID-19: Retrospective cohort study from New York city. West J Emerg Med 2020; 21: 779. [DOI:10.5811/westjem.2020.6.47919] [PMID] [PMCID]
39. [39] Lai X, Liu J, Zhang T, Feng L, Jiang P, Kang L, et al. Clinical, laboratory and imaging predictors for critical illness and mortality in patients with COVID-19: protocol for a systematic review and meta-analysis. BMJ Open 2020; 10: e039813. [DOI:10.1136/bmjopen-2020-039813] [PMID] [PMCID]
40. [40] Moledina SM, Maini AA, Gargan A, Harland W, Jenney H, Phillips G, et al. Clinical characteristics and predictors of mortality in patients with COVID-19 infection outside intensive care. Int J Gen Med 2020; 13: 1157. [DOI:10.2147/IJGM.S271432] [PMID] [PMCID]
41. [41] Sacak ME, Karacabey S, Sanri E, Omercikoglu S, Ünal E, Onur ÖE, et al. Variables affecting mortality among COVID-19 patients with lung involvement admitted to the emergency department. Cureus 2021;13: e12559.
42. [42] Chen Y, Linli Z, Lei Y, Yang Y, Liu Z, Xia Y, et al. Risk factors for mortality in critically ill patients with COVID‐19 in Huanggang, China: A single‐center multivariate pattern analysis. J Med Virol 2021; 93: 2046-2055. [DOI:10.1002/jmv.26572] [PMID] [PMCID]
43. [43] Han J, Pei J, Kamber M. Data mining: concepts and techniques: Elsevier 2011.
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA

Ethics code: IR.MEDILAM.REC.1399.0220
Clinical trials code: ---


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shanbehzadeh M, Valinejadi A, Afrah R, Kazemi-Arpanahi H, Orooji A, Kaffashian M. Comparison of machine-learning algorithms efficiency to build a predictive model for mortality risk in COVID-19 hospitalized patients. Koomesh. 2022; 24 (1) :128-138
URL: http://koomeshjournal.semums.ac.ir/article-1-6939-fa.html

شنبه زاده مصطفی، ولی نژادی علی، افراه رامین، کاظمی آرپناهی هادی، اروجی اعظم، کفاشیان محمدرضا. مقایسه کارایی الگوریتم‌های یادگیری ماشین برای ایجاد یک مدل پیش‌بینی‌کننده مرگ و میر بیماران بستری مبتلاء به کووید-19. كومش. 1400; 24 (1) :138-128

URL: http://koomeshjournal.semums.ac.ir/article-1-6939-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
جلد 24، شماره 1 - ( بهمن و اسفند 1400 ) برگشت به فهرست نسخه ها
کومش Koomesh
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 4410