بررسی پلی مورفیسم XmnI در ناحیه 5ZN آپولیبوپروتئین در بیماران هیپرپتیدمیک

چکیده
سابقه و هدف: مطالعات متعددی ارتباط پلی مورفیسم‌های موجود در مجموعه این «زنی» هیپرپتیدمی نشان داده‌اند. این مطالعه، جهت نشان دادن ارتباط میان پلی مورفیسم XmnI در ناحیه 5ZN آپولیبوپروتئین AI (C – 2500 T) (Ph.D) در بیماران ایرانی متصل به هیپرپتیدمی، اولیه انجام شد.

مواد و روش‌ها: نمونه‌های بیماران با هیپرپتیدمی و 5 نفر صدای بالای سالم در میان لیپپتید‌های خون تهیه گردید. در جفت‌های تک از نظر سن و جنس، گروه هیپرپتیدمی مشابه، سه جفت قطعه 392 زننده گردید. جفت‌هایی با ناحیه 5ZN با استفاده از واکنش زنجیره‌ای پلیمراز (PCR) و پرایمرهای ویژه انجام گردید. توزیع زننده و واکنش‌های لیپپتید‌های یک بیمار در مجموعه XmnI تعبیه و میان افراد بیمار و سالم مقایسه گردید.

یافته‌ها: روابطی زنجیره‌ای با ترتیب ۴۲/۰۷ و ۳۱/۰۷ در X1, X2 و X2X1, X1X2 و X1X2X2 در گروه هیپرپتیدمیک ترتیب ۳۲/۰۳، ۲۴/۰۳ و ۱۳/۰۳ و در گروه کنترل ترتیب ۱۸/۰۱، ۱۲/۰۱ و ۸/۰۱ بود. در بیش از نگاره‌ها و روابط متشابه شد (p<0.05). در بررسی الگوهای X2 (X) XmnI نادر ترتیب ناشی از گروه هیپرپتیدمیک، افراشیس مشابهی نسبت به گروه کنترل داشت (p>0.01). ویژگی بین- ژنوتایپ‌های مختلف XmnI در گروه هیپرپتیدمیک، اختلاف معنی داری در غلظت لیپپتید‌ها و آپولیبوپروتئین AI مشاهده نشد.

نتیجه‌گیری: ترتیب فورون نشان داد که پلی مورفیسم‌های XmnI در ناحیه 5ZN آپولیبوپروتئین AI در بیماران ایرانی مورد مطالعه مورد توجه قرار گرفت. نتایج این مطالعه ما تأییدی بر میان‌رای ارتباط پلی مورفیسم‌های مذکور را با هیپرپتیدمی کردار می‌گردد.

واژه‌های کلیدی: پلی مورفیسم, XmnI, آپولیبوپروتئین AI

مقدمه
هرپتیدمی یک اختلال منایویک است که ناشی از تولید زیاد یا نقص کلایترن لیپپتید‌های بنا ترکیبی از هرم گروه کنترل

E-mail: arbandegi@yahoo.ca

نویسنده: منصور تکی، تلفن: ۰۲۳۳۲۳۴۲۲۸۰، ثابت: ۰۲۳۳۲۸۳۱۵۵۱، تاریخ دریافت: ۰۲/۰۲/۲۰۱۸، تاریخ پذیرش: ۰۲/۰۷/۲۰۱۸
مواد و روش‌ها

افراد مورد بررسی. در این مطالعه که از نوع مطالعه مقلطی-مقايسه‌ای بود، مراجعین به بيمارستان فاطمیه (س) حضور و آزمایش‌گاه شخصی پزشکی دانشکده پزشکی جمعیت‌های مختلف مورد بررسی قرار گرفتند. گونه‌ها یک جمعیت از دامنه طبیعی بود، آزمایشات تکمیلی انجام شد. افراد با بیماری یوتوئید، دیابت ملیتوس، نارسایی کلیوی، بیماری کبدی، برفشاری خون (Hg ≥ 140 mmHg) و بیماری‌های دیابتی مورد بررسی قرار گرفتند.

ApoAI در بیماران حساس به هپراتی، کشیدن سیگار و روش زندگی، مکانیسم‌های زنگی در بیماران انتقال مقدار آن را نشان داده است [9].

نگرش و تغییرات زنگی در آنها، هر یک با دیس‌لیپیدمی است [9].

تعاملات مقداری، هر یک با دیس‌لیپیدمی مجموعه زنگ‌های نشان می‌دهد که مصرف این زنگ‌ها، بیش از وابستگی به PALI-CLIII-AIV داده‌اند [9].

ApoAI برای اولین بار برای سطح این مطالعه در بیماران ایرانی مبتلا به هپراتی‌نکروز را نشان داده است [6].

نتایج ساختاری و عملکردی مهمی در لیپوپتئین‌های خون بر عهده دارد [4].

ApoAI برای اولین بار برای اولین بار برای سطح این مطالعه در بیماران ایرانی مبتلا به هپراتی‌نکروز را نشان داده است [6].

ApoAI برای اولین بار برای اولین بار برای سطح این مطالعه در بیماران ایرانی مبتلا به هپراتی‌نکروز را نشان داده است [6].
بررسی پلی مورفیسم در ناحیهٔ ۵ پن‌ز...\(XmnI\)

گروه کنترل قرار گرفتند. افراد از نظر وضعیت صفر سیگار، در دو گروه سیگاری و غیرسیگاری تقسیم شدند. افرادی که تک و یا این گروه سیگار کشیده‌اند، سیگاری محصول شدند.\[v\]

فنون‌هایی میلی‌لیتر خون وردی به بعد حداقل ۱۲ ساعت ناشتا مانده در لوله‌های حاوی EDTA تهیه گردید. فنون‌های خون، پلاصیک به مدت ۳۰ دقیقه (۳۶۰۰ قیمت) سانتریفوژ گردید. آزمایش‌های اووله TC، TG و فسفاتون سل ناشتا تهیه شدند. T3، T4، TSH با روش فیزیولوژی، کاربرد نمی‌آورد. آنتی‌الکلیفی، آلترین تراتیاما و آسپارتین تراتیاما به روش کاری متراکم یافت تئید هپاتیلدیون تهیه بر روی بلافاصله انجام گردید. یافته‌های بالا در درجه ۷ تا ۳۷ درجه آب و آپورتیون‌ها ذخیره گردید.

روش‌های تست‌لیزه و آپورتیون‌ها برای اندازه‌گیری LDL-c، HDL-c از روش آنالیزیک و برازی

\(T3\) و \(TG\) از روش اپتیوتوکسیدومتری و دستگاه اتوآنتی‌سولز (سوئس) استفاده شد. COBAS MIRA Diagnostic System GmbH & CO. KG از سرم گسترش انجام (آلام) جهت کنترل کیفی آزمایش‌های اختلافات شد. کلیه کیف‌ها از شرکت بی‌کس آزمون‌های گردید.

آنالیز DNA جهت استخراج زئونیم‌ها \(DNA\) سلول‌های سفید خون محیطی از روش استفاده شد. باید ترمیم که سلول‌های سفید می‌شود از خون چندین منتقل به آن فسیم داده شد. مایل دریایی بعد برای لیزر (NaCl و EDTA، Tris-HCl) با پروتین‌ها ۲/۵ ۵ سنتی‌متر قطر داده شد. جهت رسوب پروتین‌ها از NaCl ۲ مولار استفاده گردید. بعد با اضافه کردن ایزوپروپانول سرد به محلول اشتباه روی، رسوب داده شد. در این مرحله، کلّاف DNA را برداشته و آن را در باف‌}

\[\text{Dna Technology A/S}

\text{مراجعه شرکت (داغلارک) استفاده گردید.}

\[\text{PCR (Polymerase chain reaction)}\]

\text{ترماسیکر که CORBETT Research دریافتی در دانشجوی ملغی و خلوط‌های متفاوت برای و آزمایش MgCl2 و لاتیکم‌های دارای قرار گرفت که در حالی در حجم‌های ۵۰ میکرولیتری دارای \(\text{DNA}\) متوسط ۱۰ یکتومول از هم رایزبی.

\(\text{MgCl2}\) \(100 \text{mM}\), Taq DNA Polymerase ۲ مکروکیلویتر از بافر ۱۰۰ سبزی (بتا-سی) و \(10 \% \text{ Dimethyl sulfoxide}\) (DMS) (2ME) و انکر Bovin Serum Albumin (BSA) \(1 \text{ mg}\) گردید.

\[\text{شرايط واکنش‌های زئونیم‌ها در ترماسیکر. ابتدا DNA}\]

\(\text{DL}\) مخلوط ۳ دقیقه در دمای \(45^\circ\text{C}\) که در ابتدا رشته‌های از هم جدا شود و سپس ۴۳ سیکل، برایم تغییر دمای ذبل

\(\text{Denaturation}\) (۴۴ دقیقه در \(94^\circ\text{C}\)) و \(\text{Extention}\) (۷۲ دقیقه در \(72^\circ\text{C}\)) بعد از اتمام سیکل، به مدت ۵ دقیقه دمای \(72^\circ\text{C}\) داده می‌شد.

\(\text{DNA}\) مخلوط ۱ دقیقه در دمای \(94^\circ\text{C}\) (Annealing) (۴۵ دقیقه در \(65^\circ\text{C}\)).
روش‌های آماری، جهت محاسبات آماری از نرم‌افزار SPSS9/Win که کمک‌گر فنی‌ها هم متنی‌ها از توسعه نرم‌سازی برخوردار بودند. در این مطالعه هیچ اختلاف آماری معنی‌داری بین مردان و زنان وجود نداشت لذا به آن‌ها در کل گروه انتخاب گردید. تفاوت‌های آماری بین پارامترهای احتمالاتی خواندنی t-student با استفاده از آزمون t-student برای مجموعه داده‌ها و زئوتروپی‌ها و با یک مدل مولفه‌فهی MmML انجام گردید. پس از آزمون Chi-square استفاده از آزمون ANOVA و به دنبال آن برای برای تهیه‌ی جدول، با رویای Tukey test مقایسه میانگین مقادیر فیت‌میکو و پنتون یونیقیوسیم‌ها در میان زئوتروپ‌های مختلف استفاده شد. نتایج قاومت آزمایشات در مقدور Mean±S.E.M. جدول به صورت گزارش شده و با شرط اختلاف معنی‌دار منظره گردید.

نتایج

بطری موثریت آزمایش برای انجام PCR 0.02Μ و 0.09Μ Tris-borate) TBE و رئوسگم آمیزی ایندیم بر روی ماده Ultraviolet و انتقال معنی‌دار توسط نور فیتوکاری.

5 میکروولت از محصول PCR با 0.1 واحد از آزمایش Roche (شرکت XML mRNA محصول‌های و با مربوطه به مدت 100bp ساعت در دمای 7.5°C هضم گردید. سپس بر روی آگاروز 2 درصد و با رنگ آمیزی ایندیم بر روی ماده DNA فلش‌ها زئوتروپی را قطع می‌کند. ال شایع X1 (Xmml) محصول‌های توانایی جلوگیری از در محل توسط آزمون Xmml برای اندازه‌گیری، ولی ال شایع (X2) به قطعات 173 و 219 جفت بازی برده می‌شود.

GAANNNNTTC CTTNNNAAG

96
بررسی پلی‌مرفیسم در ناحیه ۵ زن... XmnI

انرژتیوپهای مختلف XmnI در روی لپیده‌ای و آپریورتینهای غوره‌هیپرلیپیدمی در جدول ۳ و معنی‌دار شد.

جدول ۱: خصوصیات بیشتر و بیوشیمی‌های غوره‌هیپرلیپیدمی مورد مطالعه

<table>
<thead>
<tr>
<th>p-value</th>
<th>XmnI</th>
<th>X1</th>
<th>X2</th>
<th>X1X2</th>
<th>X1X1</th>
<th>X2X2</th>
<th>X1X2+X1X1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/74</td>
<td>46/46</td>
<td>46/46</td>
<td>46/46</td>
<td>46/46</td>
<td>46/46</td>
<td>46/46</td>
<td></td>
</tr>
<tr>
<td>0/69</td>
<td>32/32</td>
<td>32/32</td>
<td>32/32</td>
<td>32/32</td>
<td>32/32</td>
<td>32/32</td>
<td></td>
</tr>
<tr>
<td>0/001</td>
<td>34/34</td>
<td>34/34</td>
<td>34/34</td>
<td>34/34</td>
<td>34/34</td>
<td>34/34</td>
<td></td>
</tr>
</tbody>
</table>

Şekil ۲. سنتوونهای ۱ و ۲ غوره‌یکوت برای الی شاب و سنتو۳ غوره‌یکوت برای الی نادرا را نشان می‌دهد.

جدول ۲. توزیع غوره‌یکوت و فراوانی الی برای پلی‌مرفیسم ApoAI Zن در غوره‌های مورد مطالعه XmnI

<table>
<thead>
<tr>
<th>X2</th>
<th>X1</th>
<th>X2X2+X1X2</th>
<th>X1X1</th>
<th>X2X2</th>
<th>X1X2</th>
<th>X1X1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/133</td>
<td>0/844</td>
<td>12/12</td>
<td>0/81</td>
<td>6/6</td>
<td>36/36</td>
<td>0/0</td>
</tr>
<tr>
<td>0/05</td>
<td>0/95</td>
<td>0/25</td>
<td>0/30</td>
<td>0/20</td>
<td>0/15</td>
<td>0/10</td>
</tr>
</tbody>
</table>

جدول ۳. آتر پلی‌مرفیسم ApoAI Zن در گروه‌های مختلف سردم غوره‌هیپرلیپیدمیک

<table>
<thead>
<tr>
<th>p-value</th>
<th>n=۱۰ X2X2</th>
<th>n=۱۸ X1X2</th>
<th>n=۱۸ X1X1</th>
<th>XmnI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/74</td>
<td>46/46</td>
<td>46/46</td>
<td>46/46</td>
<td>46/46</td>
</tr>
<tr>
<td>0/69</td>
<td>32/32</td>
<td>32/32</td>
<td>32/32</td>
<td>32/32</td>
</tr>
<tr>
<td>0/001</td>
<td>34/34</td>
<td>34/34</td>
<td>34/34</td>
<td>34/34</td>
</tr>
</tbody>
</table>

۲۱۹bp
۱۷۳bp

Apo AI

Apo B
بحث

بسبب از ده پایلاژ‌های مورد فیلترینگ در مجموعه‌ی QZ مورد شناسایی قرار گرفته است که در تعدادی از مطالعات و روی جمع‌های هدها، از بین مورفیسم‌ها با همبستگی کلیسیدی نمی‌گردند. همچنین از بین الگو‌های XmnI و استادان مشاهده در بین همبستگی ترتیب از ما پاک مورفیسم XmnI در انتظار هکمیوپروتئین هیبردی و (C-2500 T) AI آبیوپروتئین XmnI در انتظار با همبستگی اولیه را مطالعه و با افزایش مقاومت کروم. بر اساس اطلاعات مام، شا کنون همبستگی گزارشی در مورد پایلاژ مورفیسم XmnI در جمعیت ایرانی گزارش شده است.

نتائج این مطالعه به وضوح نشان داد که سطح لیپیدهای بالاجا با طبیعت معنی‌دار (P<0.001) بین دو گروه، منفی‌می‌باشد. به‌همین‌روی در این برسی، توزیع زندهی‌های مختلف گروه همبستگی‌های مختلف XmnI دانست (P<0.05). فراوانی ال اداد در گروه همبستگی‌های دیگر از گروه همبستگی‌های بیشتر از گروه کنترل بود (P<0.01). نود رابطه آماری معنی‌داری در مورد از زندهی‌های مختلف XmnI لیپیدهای پلاجیایی در گروه همبستگی‌های بسته نامه، هرچند افزایش کمتر نسبت XmnI که بر اثر الکل گرفته است X2 در مطالعه گزویگون در ال X1 و همبستگی‌ها بودند.

جوان رابطه آماری معنی‌داری بین زندهی‌های مختلف XmnI و گلوستی‌های آپوپروتئین AI در گروه همبستگی‌های مختلف XmnI به دست نمی‌آید. بنابراین نتایج گرفته که حضور ال الاسداد باعث تغییر بین Zn AI گی شود. به‌همین‌روی این پایلاژ مورفیسم باعث تغییر سکل‌سازی Zn AI می‌شود (به علت اینکه در ناحیه 2500 نسبت به مکان شروع Zn AI قرار دارد). ولی مشابه حضور همبستگی این ال با خاصیت پایلاژ مورفیسم‌ها در مجموعه‌ی QZ مورد شناسایی قرار گرفته است XmnI و آپولیمیوپروتئین AI گروه همبستگی‌های نسبت به گروه کنترل البته دیگر، افزایش غلظت لیپیدها و XmnI می‌باشد.

آپولیمیوپروتئین AI می‌تواند نتیجه بیکه‌کار در حال انجام یافته، با احتمال مواردی مختلف در این گروه‌ها در مطالعه‌های مختلف

در بین این موارد، گزارش شده است که

در برخی از مطالعات انجام شده ارتباط پلی‌مورفیسم XmnI با همبستگی الگوی کلیسیدی گزارش شده است.

ما پلی‌مورفیسم XmnI در انتظار هکمیوپروتئین هیبردی و

و آپولیمیوپروتئین AI در انتظار با همبستگی اولیه را مطالعه و

از این دیدگاه، افزایش غلظت لیپیدها و

در انتظار با همبستگی اولیه را مطالعه و

و آپولیمیوپروتئین AI در انتظار با همبستگی اولیه را مطالعه و

اکثر آماری معنی‌داری بین زندهی‌های مختلف XmnI و گلوستی‌های آپوپروتئین AI در گروه همبستگی‌های مختلف XmnI به دست نمی‌آید. بنابراین نتایج گرفته که حضور ال الاسداد باعث تغییر بین Zn AI گی شود. به‌همین‌روی این پایلاژ مورفیسم باعث تغییر سکل‌سازی Zn AI می‌شود (به علت اینکه در ناحیه 2500 نسبت به مکان شروع Zn AI قرار دارد). ولی مشابه حضور همبستگی این ال با خاصیت پایلاژ مورفیسم‌ها در مجموعه‌ی QZ مورد شناسایی قرار گرفته است XmnI و آپولیمیوپروتئین AI گروه همبستگی‌های نسبت به گروه کنترل البته دیگر، افزایش غلظت لیپیدها و XmnI می‌باشد.

آپولیمیوپروتئین AI می‌تواند نتیجه بیکه‌کار در حال انجام یافته، با احتمال مواردی مختلف در این گروه‌ها در مطالعه‌های مختلف

در بین این موارد، گزارش شده است که

در برخی از مطالعات انجام شده ارتباط پلی‌مورفیسم XmnI با همبستگی الگوی کلیسیدی گزارش شده است.

ما پلی‌مورفیسم XmnI در انتظار هکمیوپروتئین هیبردی و

و آپولیمیوپروتئین AI در انتظار با همبستگی اولیه را مطالعه و

از این دیدگاه، افزایش غلظت لیپیدها و

در انتظار با همبستگی اولیه را مطالعه و

و آپولیمیوپروتئین AI در انتظار با همبستگی اولیه را مطالعه و

اکثر آماری معنی‌داری بین زندهی‌های مختلف XmnI و گلوستی‌های آپوپروتئین AI در گروه همبستگی‌های مختلف XmnI به دست نمی‌آید. بنابراین نتایج گرفته که حضور ال الاسداد باعث تغییر بین Zn AI گی شود. به‌همین‌روی این پایلاژ مورفیسم باعث تغییر سکل‌سازی Zn AI می‌شود (به علت اینکه در ناحیه 2500 نسبت به مکان شروع Zn AI قرار دارد). ولی مشابه حضور همبستگی این ال با خاصیت پایلاژ مورفیسم‌ها در مجموعه‌ی QZ مورد شناسایی قرار گرفته است XmnI و آپولیمیوپروتئین AI گروه همبستگی‌های نسبت به گروه کنترل البته دیگر، افزایش غلظت لیپیدها و XmnI می‌باشد.

آپولیمیوپروتئین AI می‌تواند نتیجه بیکه‌کار در حال انجام یافته، با احتمال مواردی مختلف در این گروه‌ها در مطالعه‌های مختلف

در بین این موارد، گزارش شده است که

در برخی از مطالعات انجام شده ارتباط پلی‌مورفیسم XmnI با همبستگی الگوی کلیسیدی گزارش شده است.

ما پلی‌مورفیسم XmnI در انتظار هکمیوپروتئین هیبردی و

و آپولیمیوپروتئین AI در انتظار با همبستگی اولیه را مطالعه و

از این دیدگاه، افزایش غلظت لیپیدها و

در انتظار با همبستگی اولیه را مطالعه و

و آپولیمیوپروتئین AI در انتظار با همبستگی اولیه را مطالعه و

اکثر آماری معنی‌داری بین زندهی‌های مختلف XmnI و گلوستی‌های آپوپروتئین AI در گروه همبستگی‌های مختلف XmnI به دست نمی‌آید. بنابراین نتایج گرفته که حضور ال الاسداد باعث تغییر بین Zn AI گی شود. به‌همین‌روی این پایلاژ مورفیسم باعث تغییر سکل‌سازی Zn AI می‌شود (به علت اینکه در ناحیه 2500 نسبت به مکان شروع Zn AI قرار دارد). ولی مشابه حضور همبستگی این ال با خاصیت پایلاژ مورفیسم‌ها در مجموعه‌ی QZ مورد شناسایی قرار گرفته است XmnI و آپولیمیوپروتئین AI گروه همبستگی‌های نسبت به گروه کنترل البته دیگر، افزایش غلظت لیپیدها و XmnI می‌باشد.
Aims: Apo AI, CIII, and AIV genes are involved in the regulation of plasma cholesterol and triglyceride levels. We evaluated the polymorphism of these genes in healthy and hyperlipidemic Mayan people of the Yucatan Peninsula, Mexico. METHODS: We genotyped 952 unrelated healthy individuals and 450 hyperlipidemic subjects. We used the PCR-RFLP method for XmnI polymorphism in the Apo AIV gene. We performed a simple linear regression to evaluate the relationship between polymorphism and plasma levels of cholesterol and triglycerides.

Results: The frequency of the XmnI polymorphism was 0.28 in healthy controls and 0.34 in hyperlipidemic subjects. The plasma levels of total cholesterol (TC) and triglycerides (TG) were significantly lower in the XmnI genotype carriers than in the wild type carriers. The TC/TC ratio was also significantly lower in the XmnI genotype carriers. The prevalence of XmnI polymorphism was lower in hyperlipidemic subjects with a history of coronary artery disease, diabetes, and hypertension.

Conclusions: The XmnI polymorphism of the Apo AIV gene may be associated with a decreased risk of hyperlipidemia and cardiovascular disease in Mayan people of the Yucatan Peninsula. Further studies are needed to confirm these findings in larger populations and to investigate the underlying mechanisms.

